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Executive Summary 
The NSW Natural Resources Commission (NRC) engaged with the University of Newcastle to investigate 
the feasibility of remote sensing technologies, particularly Airborne Laser Scanning (ALS), in monitoring 
forest conditions and biophysical outcomes. ALS is a form of LiDAR (Light Detection and Ranging) 
technology that acquires highly detailed three-dimensional data of the Earth’s surface and vegetation 
from an aerial platform. This report covers the analyses conducted on ALS data spanning multiple 
captures and years within NSW State Forests, focusing on its implications for understanding various 
silvicultural practices. The main study objectives were to: 

• Integrating data: Examined ALS data gathered across numerous captures and years, this will give 
insights into changes in forest structure, composition, and growth. By harnessing ALS technology 
in combination with field data, the study provides a more nuanced understanding of NSW State 
Forests, facilitating effective monitoring and evaluation.  

• Silvicultural Practices: Consideration is given to the influence of various silvicultural practices, 
such as harvesting methods and reforestation techniques, on forest dynamics. By linking ALS 
data with data identifying types of silvicultural interventions used in forestry practices, this 
report gives insight into the effects of different practices on forest vitality, biodiversity, and 
adaptability. 

• Longitudinal Assessment: Through multiple ALS captures at different time points, the report 
identifies trends and patterns in forest metrics over time. This longitudinal perspective aims to 
increase understanding of forest structure and ecosystem dynamics and may inform adaptive 
management strategies to foster sustainable forestry practices. 

• Recommendations: Based on the findings, the report covers the benefits of integrating ALS 
analysis into monitoring and reporting frameworks for NSW State Forest management. It 
emphasizes the necessity for continued research and collaboration to refine remote sensing 
methodologies and enhance their applicability in assessing silvicultural impacts. 

Within this report, we present worked examples and in-depth analysis of readily accessible remote 
sensing data, aimed at exploring various potential remote sensing 'indicators'. These indicators were 
identified and deliberated upon in earlier phases of the feasibility study. This report also highlights 
outputs in software and data repositories. These outputs make remote sensing data more accessible 
and useable for stakeholders involved in forest management. Further, these outputs can facilitate 
sharing knowledge for interdisciplinary collaborations, which may maximise the impact and value of 
utilising remote sensing technologies in monitoring and managing NSW State Forests.  

At the site scale, our analysis encompasses indicators of structural complexity, including an examination 
of canopy gaps and harvested areas, alongside estimates of canopy foliage density. Additionally, we 
provide examples that examine the impacts of terrain slope data and differences across various NSW 
State Forest exclusion zones on forest structural attributes. Co-incident high-resolution imagery are 
combined with ALS data to provide metrics of the impact of fire damage from 2019/2020 wildfires. 

‘Key takeaways’ from our analysis include: 

 ALS-derived LiDAR metrics offer a means to summarise change in forest height and canopy 
coverage (pg. 15) 
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 Modelling canopy top height recovery and incorporating slope types, harvesting practices and 
FESM classes can describe the rate of recovery across these different factors (pg. 31) 

 Canopy foliage density can be a useful means to visualise canopy characteristics using three 
separate, but related, LiDAR metrics: top of canopy (p95), bottom of canopy (p50) and canopy 
cover (pg. 40) 

 Canopy top height (mean p95 heights) and canopy coverage recovers after harvest events across 
a range of slope classes (pg. 20 & 38) 

 Despite differences in harvesting intensity, areas subjected to both light and heavy harvesting 
practices exhibit comparable rates of canopy regrowth over time, as evidenced by mean p95 
height measurements derived from LiDAR data and similar canopy coverage recovery trends (pg. 
16 & 36) 

 Harvested areas exhibit similar proportions of mean p95 tree heights compared to some 
protected areas within state forest, highlighting potential similarities in canopy structure 
between areas managed for timber production and areas managed for conservation (pg. 34) 

 Differences in canopy top heights due to different fire severities can be observed via LiDAR (pg. 
23) 

 Harvesting events in 2010 and 2015 are clearly reflected in the skewness data, with notable dips 
observed in skew following these events, particularly in Wauchope. However, skew returns to 
pre-harvest levels within a short period of time, indicating the resilience of forest ecosystems to 
silvicultural practices (pg. 45) 

 A more nuanced understanding of forest structure over time can be obtained with more regular 
ALS capture data (pg. 46) 

 

In conclusion, the integration of ALS technology may offer a promising avenue for enhancing forest 
monitoring and management practices in NSW State Forests.  Continued research may help maximise 
the potential of remote sensing methodologies and ensure the sustainability of forestry practices in the 
region. This report recommends future research to focus on long-term monitoring with ALS captures to 
track changes in forest dynamics over time, as well as utilising emerging technologies, like ‘Geiger-Mode 
LiDAR’. 
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1. Introduction 
Airborne Laser Scanning (ALS), often referred to as LiDAR (Light Detection and Ranging), has emerged as 
a pivotal technology in forestry research, providing insights into forest structure and dynamics (Atkins et 
al., 2023). By emitting laser pulses from aircraft or ground-based platforms, ALS captures precise 
measurements of terrain and vegetation, offering a detailed portrayal of forest canopy height, density, 
and structure (Lefsky et al., 2002; Wulder et al., 2008). 

In forestry applications, ALS enables comprehensive three-dimensional modelling of forests, to facilitate 
understanding of spatial distribution and structural variability (Atkins et al., 2023; Wulder et al., 2008). 
Moreover, through repeated ALS surveys over time, researchers can monitor changes in forest 
structures, providing valuable insights into the impacts of management practices and natural 
disturbances (Lefsky et al., 2002). 

In the context of NSW State Forests, ALS presents a powerful tool for analysing temporal data and 
assessing forest disturbance and recovery dynamics (Qin et al., 2022). Following significant disturbance 
events such as the 2019-20 wildfires in eastern Australia, which inflicted damage on native forests 
(Bowman et al., 2021), understanding the patterns of recovery may be important for effective forest 
management and conservation efforts (Hillman et al., 2021).  

In the context of analysing longitudinal data and disturbance recovery in NSW State Forests, LiDAR 
provides an opportunity to study the recovery trajectories of disturbed forests (Qin et al., 2022). 
Following the impact of the 2019-20 fires in eastern Australia, it was found that >44% of native forests 
suffered canopy damage (Bowman et al., 2021). Understanding recovery trajectories post disturbances 
like these, can inform forest management decisions and conservation efforts (Hillman et al., 2021). 

This report aims to incorporate a retrospective analysis of ALS to demonstrate how this technology may 
be used to gain further understandings of how forest structures have evolved, and to increase our 
understanding of the potential interplay of a range of factors (for example topographic position and 
impact of disturbance) in shaping forest dynamics. The analyses presented in this report demonstrate 
how ALS may be beneficial in understanding and tracking different facets of forest structural change: 

• Comprehensive Change Assessment: Building upon the insights gained from initial stages of 
collaboration with the Natural Resource Commission (NRC), this report is an extension of 
analysis across all ALS capture areas with multiple ALS capture time points (2012, 2016 & 2023). 
This report aims to present a comprehensive picture of longitudinal trends, shedding light on 
the broader patterns and drivers of forest dynamics.  

This report is the second stage in the Agreement 2024-02H Retrospective LiDAR analysis of coastal NSW 
State Forests and further builds on work outlined in a previous report by Brown et al. (2023). The 
previous report presented an overview of ALS data acquired in 2022-2023, with a focus on the impact of 
Fire Extent and Severity (FESM) measures. This updated report extends analysis to include previous 
overlapping ALS data captures and analyse changes over time, demonstrating how ALS may be used to 
examine factors impacting forest dynamics. 
 
This report includes information on the calculation of ALS metrics as well as worked examples of this 
data. The choice of analyses was guided by existing literature (see Appendix B). A comprehensive 
overview of processing ALS data into Canopy Height Models is provided in previous Brown et al. (2023) 
report. 
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Table 1. Overview of data processing and how these are addressed in this report.  
 

Metric Details How it is addressed in this 
report 

Canopy top height (m) The 95th percentile height of 
first returns 

Section 2.1.  
 

Canopy coverage (%) Calculated as the number of 
first returns over 2m, divided by 
all first returns. 

Section 2.2 

Canopy foliage density (m) The difference between the 
canopy top height (p95) and 
canopy median height (p50). 
 

Section 2.3 

Skew  Skewness of first returns (i.e., 
whether more points are in the 
upper strata (negative skew) or 
lower (positive skew) 
 

Section 2.4 

CHM p95 return height 
proportions 

CHM p95 returns assigned one 
of 6 height group classes based 
on return height (0-2m, 2-6m, 6-
12m, 12-20m, 20-35m, 35m+) 

Section 2.1 

Fire extent and severity 
mapping (FESM) 

Co-incident high-resolution 
imagery used to classify regions 
subject to natural fire 
disturbance.  

Section 2.1.2, 2.1.4, & 2.2.2 
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Table 2. Overview of proposed extension of analyses and how these are addressed in this report.  
Proposed Extension of Analysis How it is addressed in this report 

Canopy Height Recovery Analysis after 
Harvesting and Fire Events. 

Section 2.1.1 to 2.1.5. 
Impact of different harvesting types, topographical 
position & predictive modelling of height recovery. 

Canopy Coverage Recovery Analysis after 
Harvesting and Fire Events. 
 

Section 2.2.1 to 2.2.2. 
Impact of different harvesting types and 
topographical position are assessed.  

Canopy foliage density Dynamics Analysis after 
Harvesting Events. 

Section 2.3. 
Combination of three different metrics to assess 
forest density dynamics. 

Skew Analysis after Harvesting and Fire Events. Section 2.4. 
Analysis of skew and how this may be impacted by 
topographical position. 

 

1.1 Brief overview of data processing: from point clouds to ALS metrics 
ALS metrics are summary statistics derived from all points in a specified area, typically focusing on the 
distribution of height values. 
 
ALS data captures consisted of roughly 10TB of LiDAR LAS data, which covered 540,000 hectares across 
NSW state forest. These included 27 state forests across 7 regions (Eden, Batemans Bay, Bulahdelah, 
Wauchope, Coffs Harbour, Styx River and Casino) across 3 separate capture years (2012, 2016 and 
2023). To ensure consistency across captures, the point cloud data is first normalised to ensure that the 
LiDAR returns for overlapping geographical regions are equivalent. The normalised point clouds are then 
smoothed with a pit-free algorithm at the raw LiDAR return resolution. From the normalised point 
clouds, we generated a 1m x 1m resolution canopy height model for each region. 
 
For the scope of this report, the below analyses rely upon metrics calculated at the 30m x 30m 
resolution. This down-sampled resolution was chosen because it equates to estimating LiDAR metrics for 
an ~ 0.1ha-sized pixel. The main benefit of this resolution is that it allows for meaningful comparisons 
across different features of forest dynamics aligned with field data such as landform, silvicultural history, 
and areas of environmental significance.  
 
Down-sampling, however, can result in loss of finer details due to changes in point density. For future 
work, similar methods can be again utilised to examine forest mosaic at any resolution and notably at a 
higher point density. With the increased resolution, factors such as tree species and treetop counting 
become possible, albeit at a computational cost in data size and processing. Higher density point cloud 
analysis would allow for improved precision in the estimations of forest height, canopy cover and 
biomass, and in some cases be used for accurate species identification, or mapping habitats of various 
fauna. For future work, we provide scripts which outline processing of LiDAR data and production of TIFs 
which can be accessed here: https://osf.io/jusc4/. 
 

https://osf.io/jusc4/
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Table 3. ALS metrics calculated for the analyses covered in this report.  
Metric Details Potential limitations 
Canopy top 
height (m) 

The 95th percentile height of first returns May be affected by the presence of very 
tall structures or isolated trees, leading 
to an overestimation of the general 
canopy height. Even in the 95th 
percentile this could be skewed by a few 
extremely tall trees or structures which 
may not represent the overall canopy 
height accurately.   

Canopy median 
height (m) 

The 50th percentile height of first 
returns. 

The median height is dependent on 
both top and bottom returns within a 
pixel such that movement in either 
value is sufficient to shift the median. 
Smoothing of the point cloud 
distribution assists with this sensitivity 
to outliers but one should interpret the 
p50 with respect to other metrics for 
the top canopy, i.e., p95.  

Canopy foliage 
density (m) 

The difference between the canopy top 
height (p95) and canopy median height 
(p50). 

Dependent on the accuracy of the p95 
and p50 height measurements, which 
can be influenced by factors such as the 
density of the vegetation and the 
presence of gaps in the canopy.  

Canopy 
coverage (%) 

Calculated as the number of first returns 
over 2m, divided by all first returns. 

The threshold of 2m for first returns 
may exclude significant understory 
vegetation, leading to an 
underestimation of overall canopy 
coverage. Additionally, variations 
environmental conditions can impact 
accuracy. 
 

Skewness (m) Skewness of first returns (i.e., whether 
more points are in the upper strata 
(negative skew) or lower (positive skew) 
 

Skewness identifies distribution of strata 
but not the types of strata at each 
height. Therefore, skewness 
interpretations may be impacted by 
mixed strata. Mixed strata occurs where 
multiple layers of vegetation are present 
at different heights. For example, 
multiple canopy layers such as areas 
with dense upper canopy and 
understory with significant vegetation, 
gaps and openings, variation in terrain 
elevation or different types of 
vegetation (e.g., taller trees mixed in 
with shrubs within the same area) may 
all contribute to the same region of a 
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distribution. Additional information 
about forest species and landform 
would be helpful for identifying the 
composition of the skewness 
distribution.  

Slope  The topographical position of the 
analysed area. This was calculated using 
a topographical position index (TPI) 
from a digital terrain model to generate 
six slope classes (Valley, Lower Slope, 
Flat Slope, Middle Slope, Upper Slope, 
Ridge). Notably, the slope classes are 
ordinal (i.e., upper slope must be above 
lower slope classes). See Figure 6 for 
further information.  

These classifications are agnostic to the 
aspect of slope class (i.e., the direction 
of the slope). That means two lower 
slope classifications can face in different 
directions, i.e., north-south vs. east-
west.  
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2. Longitudinal analysis 
In ecological research, longitudinal data analysis can play a crucial role in understanding the dynamics 
and recovery processes within ecosystems over time. By tracking ALS metrics across different time-
points, researchers can observe patterns of forest dynamics including growth, disturbance and 
regeneration. The longitudinal approach enables a comprehensive examination of how forests respond 
to various environment factors and management interventions, providing valuable insights for 
conservation and sustainable practice.  

In this section, changes in ALS metrics across different time-points are presented. To explore these, the 
subsequent sections follow a format of introduction, methods, results, and discussion. The below 
examples will cover the steps taken to calculate ALS metrics and utilise data to demonstrate use cases 
for metrics when examining forest dynamics over time.  
 

2.1 Canopy height analysis  
 
Introduction  

Canopy height analysis plays a pivotal role in understanding forest ecosystems, particularly in assessing 
habitat suitability and biodiversity. Maintaining or conserving canopy height diversity is a key goal in 
sustainable forest management strategies. Leveraging LiDAR technology offers means to accurately 
capture and represent canopy structure. LiDAR data can be acquired from various platforms, including 
ground-based systems such as terrestrial/mobile laser scanning (TLS, MLS), aerial platforms like ALS, or 
even satellites such as the Global Ecosystem Dynamics Investigation (GEDI). Each platform may offer 
unique advantages and limitations, with a typical trade-off between detail and spatial coverage. In the 
following section, our focus lies on ALS data with a resolution of 30m x 30m. 

The following section will cover ALS-derived metrics specifically tailored for canopy height analysis. 
These metrics encompass parameters such as top height, mean height, canopy cover, and skewness. 
While acknowledging the existence of more intricate LiDAR-derived metrics, we opt for a selection of 
straightforward area-based metrics that have demonstrated utility in prior studies (see Appendix B). 
These metrics serve not as exhaustive representations of canopy structure but rather as illustrative 
examples, elucidating the requisite processing procedures. It is important to note that the intricacies of 
forest structure may extend beyond these metrics, incorporating numerous other variables and 
unknowns. Despite this, the incorporated metrics still serve as valuable tools for understanding forest 
dynamics. While they may not capture every nuance of the forest, they offer a practical approach to 
categorising and studying forests, thereby contributing to our overall understanding of ecosystem 
dynamics, and aiding in effective forest management practices. 

 
Methods 

ALS height metrics are derived from the vertical arrangement of points within a specified spatial region. 
Illustrated in Figure 1 is a sample LiDAR point cloud representing a 'plot,' alongside a histogram 
displaying height distribution (i.e., the count of points within each height category). The summary 
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statistics, termed ALS metrics, can be taken from this histogram (vertical profile). These metrics include 
top height (p95), average height, median height, and canopy cover (the ratio of points surpassing a 
height threshold). 

The mean top height in the 95th percentile or p95 metric was computed for each grid cell (30m x 30m 
pixel) within the study area and comparing these values between successive LiDAR acquisitions to 
examine changes in canopy height over time. This metric provides a good representation of canopy 
height and can account for extreme outlier values, such as bird strikes (see Figure 1).  

 

Figure 1 - Example of a 3D point cloud (left) and the corresponding distribution of height values  
(right), with the 50th and 95th percentiles shown in red. 

ALS metrics are then projected over existing field data, commonly referred to as ‘vector’ data, to enable 
comprehensive analysis of various factors within areas of interest. The integrated approach facilitates 
the examination of a wide range of elements, including fires, historical harvesting activities and 
designated conservation zones. By overlaying ALS-derived metrics onto the vector data, researchers and 
forest managers can gain insight into the spatial distribution and impact of harvesting events, as well as 
identify areas of ecological importance for conservation efforts. 
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2.1.1 Canopy height recovery in harvested regions  
 
Introduction 

Understanding the dynamics of canopy recovery following forest harvesting is crucial for effective forest 
management and conservation efforts. This section utilises LiDAR data and accompanying field data to 
investigate the patterns of canopy height recovery.  

While acknowledging the potential influence of multiple harvest events and natural disturbances such as 
bushfires, this report focuses on delineating the recovery trajectories of the upper canopy post-harvest. 
This report will demonstrate how ALS may be used to gain valuable insights into the resilience of forest 
ecosystems and examine differences in metrics, such as mean p95 heights, for management practices 
tailored to mitigate the impacts of human activities and environmental disturbances on canopy 
structure and biodiversity. 

Methods 

For the following analysis, LiDAR data was filtered to areas within Wauchope that were last harvested in 
years 2010, 2015, and 2020. For each harvest year, mean p95 heights (m) and standard errors for the 
same geographical regions are calculated based on ALS conducted in 2012, 2016, and 2023.  

Figure 2 shows a map of analysed ALS data within Wauchope where regions that were previously 
harvested are shown in separate colours. As a comparison, metrics for Environmentally Significant Areas 
(ESA’s) are averaged to provide a baseline of regions that have not been disturbed by silvicultural 
practices. 

We focus on Wauchope for two reasons. First, Wauchope was measured across all three existing ALS 
captures (2012, 2016 and 2023). Because it contains the greatest number of ALS captures across NSW, 
analyses of longitudinal trends within the report are based on the Wauchope region. However, for 
completeness, we present the same analyses for each region separately in Appendix A. 

Second, these specific regions harvested in 2010, 2015, and 2023 were chosen for their temporal 
proximity to the LiDAR captures. By closely following each ALS capture, we sought to demonstrate forest 
recovery trends prior to and following silvicultural disturbance. Regions last harvested in 2010 have had 
a longer period of time for recovery where all three LiDAR captures were flown after harvesting 
occurred. Regions last harvested in 2015 and 2020 were chosen because LiDAR captures were flown 
prior to and following silvicultural disturbance. We note that although regions can be harvested more 
than once, the most recent harvest year is used in our analyses.  

Finally, when examining the impacts of fires we include Wauchope but note that the Wauchope region 
did not experience as extensive damage in the 2019-20 wildfires (see Figure 3). For this purpose, any 
analyses of fire extent and severity, indexed by FESM classifications, were conducted on the Eden region 
where a single ALS capture was conducted in 2023. For a description of the metric (p95) and its 
limitations, see Table 3. 
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Figure 2 - Map of Wauchope identifying areas included in multiple captures analysis. Separate regions 
last harvested in 2010 (coloured purple), 2015 (green) and 2020 (yellow) are aggregated and compared 
against each other and average ESA regions (shown in blue). These regions were selected to highlight 
silvicultural disturbances at timepoints close to the LIDAR capture flights conducted in 2012, 2016, and 
2023. ESA regions are averaged to provide a baseline comparison for regions that have not been 
disturbed by silvicultural practices. Click here for an interactive version of this map.  

https://uoneduau-my.sharepoint.com/:u:/g/personal/c3233895_uon_edu_au/EdLC7sVWl7RGiv5JpoGUB58BIIsHSo27ccQ81b4swoZX5w?e=mCWPZe
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Figure 3 - Pie charts of the relative proportions of fire extent and severity mapping (FESM) ratings across 
Eden and Wauchope captures. In subsequent analyses of FESM, we analyse the Eden capture as to 
demonstrate the impacts of fire on LIDAR metrics. Of note, Eden has only a single LIDAR capture in 2023 
and, so, in analyses emphasising longitudinal patterns over time, we return to analyse Wauchope where 
LIDAR captures were flown in 2012, 2016, and 2023. FESM ratings for other captures are available in 
Figure A1. Note that FESM ratings are traditionally categorised into five levels (unburnt, low severity, 
moderate, high, and extreme severity). For clarity, we have condensed these five levels to three where 
low severity is merged with unburnt, and high severity is merged with extreme. 

 

Main results and discussion 

Figure 4 - Mean p95 heights for areas harvested in 2010, 2015 & 2020 with points indicating separate 
ALS captures. Vertical red dashed line is a visual guide of the approximate timepoint of silvicultural 
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disturbance, noting the change in this timepoint across regions. For all other locations see Appendix 
Figure A2. 

Canopy top height, measured as mean p95 heights returns, can be utilised to understand recovery after 
harvesting events. Across panels, harvest events are signified in the time points on the dash-dotted red 
line. As an example, the second-from-right panel for regions harvested in 2015 exhibit top-canopy 
recovery as ALS captures were conducted prior to and after the harvesting event. For 2015-harvested 
regions, mean p95 heights returns measured in the 2016 ALS capture were 30.9m (se = 0.09) as 
compared to 34.5m (se = 0.06) measured in 2012 ALS capture. By 2023, the mean p95 heights returns 
for the same regions were recovering where mean p95 heights returns were 32.2m (se = 0.06). 
Regrowth of upper canopy also occurs post-harvest in the 2010-harvested regions albeit noting the 
absence of a baseline p95 CHM returns for the 2010-harvested regions. ESA average heights also 
decreased between 2016 (left-most panel, second point) and 2023 (left-most panel, third point) 
suggesting natural disturbances may have affected top canopy height across the capture.  

 

2.1.2 Canopy height recovery in harvested regions: comparing light and heavy 
harvesting practices 
 
Introduction 

Forest harvesting practices encompass a spectrum of techniques, ranging from selective thinning to 
regeneration cuts, each tailored to achieve specific management objectives. Among these, different 
harvesting methods represent contrasting approaches with distinct impacts on forest ecosystems. Light 
harvesting, often synonymous with selective harvesting or thinning, involves the removal of a limited 
number of trees, typically targeting diseased or low-value specimens while preserving the overall forest 
canopy. In contrast, heavy harvesting involves more extensive removal of trees, aiming to regenerate 
forest stands or create openings for new growth. Understanding the effects of these harvesting 
techniques on canopy dynamics is paramount for sustainable forest management. By examining the 
regrowth patterns following light and heavy harvesting practices, we gain insights into the resilience of 
forest ecosystems and their capacity to recover from human intervention. Such analyses provide 
valuable guidance for policymakers, land managers, and conservationists in formulating strategies that 
balance timber extraction and biodiversity conservation.  

Key Takeaways 

ALS-derived LiDAR metrics offer a means to summarise change in forest height.  

Canopy top height (mean p95 heights) show recovery after harvest events over the course of 11 years 
and across distinct regions.  

For each region, p95 measurements track regrowth patterns in line with ESA averages for the same forest 
region. 



   
 

  18 
 

 
Methods 

For the following analysis, LiDAR data was filtered to areas within Wauchope that were last harvested in 
years 2010, 2015, and 2020. For each harvest-year-region, mean p95 heights (m) and standard errors 
are calculated based on ALS captures conducted in 2012, 2016, and 2023. Separate means were then 
calculated for harvest practices classified as “heavy” (e.g., STS regen or STS heavy) or “light” (e.g., STS 
light or “thinning”). Note that “heavy” practices were recodified in 2018 as part of a harvest practice 
review. The “STS-heavy” practice was discontinued, and no areas were subject to intensive harvesting 
following 2018. For a description of the metric (p95) and its limitations, see Table 3.  

 

 
Figure 5 - Mean p95 heights for the Wauchope capture for areas harvested in 2010, 2015 & 2020 with 
points indicating separate ALS captures and coloured lines indicating type of silvicultural practice. 
Vertical red dashed line is a visual guide of the approximate timepoint of silvicultural disturbance, noting 
the change in this timepoint across regions. For clarity, we present only “light” (blue) and “heavy” 
(green) silvicultural practices in this figure, noting that other silvicultural practices, such as mixed 
practices or salvage harvests, are present in the data. For analyses of other capture locations areas, see 
Appendix Figure A3. 

 

Main results and discussion 

The analyses shown in Figure 5 can be used to examine the impacts of different harvesting practices on 
mean p95 heights. Regrowth patterns for harvesting practices classified as “heavy” are shown in green 
points and "light” classified practices shown in blue points.  

In general, regrowth patterns are similar between “heavy” and “light” practices across each of the three 
regions. One notable difference is that regions selected for a given silvicultural practice show a-priori 
differences. For example, heavy-practice harvested regions in 2010 (second-from-left panel) show 
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higher p95 return heights than light-practice harvested regions. However, for 2020-harvested regions 
this pattern is reversed where light-practice harvested regions are higher (green vs. blue points, right-
most panel).   

Interpretation of the long-term impacts of different harvesting practices should consider additional 
selection factors that affect which regions are selected for a particular silvicultural practice. 
Consideration of other metrics of forest regrowth such as canopy coverage (shown in Figure 18) and 
canopy foliage density (shown in Figure 22) are included in this report. It is worth noting that regrowth is 
affected by a-priori forest characteristics such as landform (e.g., valley vs. ridge areas) and species 
composition (e.g., eucalypt species competition). 

 

 

2.1.3 Canopy height recovery in harvested regions across varied landform classes  
 
Introduction 

Slope position is known to influence forest type and productivity due to soil conditions, 
moisture availability and terrain characteristics. Due to this, different harvesting techniques may be 
utilised based on slope position to optimise forest productivity and regeneration. Recognising the 
significance of slope position in determining forest characteristics and productivity, and by adapting 
harvesting strategies accordingly, forest managers can enhance the sustainability of forest management 
practices and promote ecosystem resilience in the face of environmental challenges. This understanding 
underscores the importance of considering slope position as a key factor in forest management planning 
and decision-making processes. 

Methods 

Slope was identified and calculated by utilising the Digital Terrain Model (DTM). DTM’s are created from 
ALS capture data and represent the bare earth surface without any features such as buildings or 
vegetation. Terrain was then classified into 6 slope categories: valley, lower slope, middle slope, flat 
slope, upper slope, and ridge (Figure 6). 

Key Takeaways 

Despite differences in harvesting intensity, regions subjected to both light and heavy harvesting practices 
exhibit comparable rates of canopy regrowth over time, as evidenced by mean p95 height measurements 
derived from LiDAR data. 
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Figure 6 - Example of slope positions following the topographic position index (TPI). Adapted from 
Muddarisna et al. (2020) and Weiss (2001). 

Weiss (2001) classifies slopes using the Topographic Position Index (TPI) these being:  

• Valley: TPI <= -1  

• Lower Slope: -1 < TPI <= -0.5  

• Flat Slope: -0.5 < TPI < 0.5 and slope <= 5°  

• Middle Slope: -0.5 < TPI < 0.5 and slope > 5°  

• Upper Slope: 0.5 < TPI <= 1  

• Ridge: TPI > 1 

 

See Figure 7, for proportions of landform classes across harvested areas in Wauchope where middle 
slopes are the most present landform class (70%).  
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Figure 7 - Pie Chart with percentage of each slope class found in LiDAR data set within Wauchope. For all 
other capture regions see Appendix Figure A7. 

 
Method  

For the following analysis, LiDAR data was filtered to areas within Wauchope that were last harvested in 
years 2010, 2015, and 2020. For each harvest year, mean p95 heights (m) and standard errors for the 
same geographical regions are calculated based on ALS captures conducted in 2012, 2016, and 2023. 
Separate means are calculated for each slope class (e.g., Valley or Ridge) in each harvested region. 
Broadly, the landform composition of each region is similar where the majority of returns are from 
middle-slope regions (~70%) and few ridges and valleys (1% respectively). For clarity, the relative 
proportions of each slope class are presented in Figure 7. These proportions are to aid interpretation of 
Figure 8 where mean p95 heights are calculated for slope class, harvested region by year, and ALS 
capture. For a description of the metric (p95) and its limitations, see Table 3. 

Main results and discussion  

The analyses of mean p95 heights from Figure 8 are decomposed into each slope class within 
Wauchope. Mean p95 heights differ across slope classes (i.e., average across vertical panels). For 
example, returns in the “flat” class were lower than returns in the “valley” class. Mean p95 returns also 
differed within slope classes and across distinct regions (i.e., across horizontal panels). For example, 
within the “flat” class (top-most horizontal panel), mean p95 heights were higher in regions harvested in 
2015 (central panel) as compared to 2012 (second-from-left panel). It is worth noting that although 
regions may be classed under the same slope classification, other geographical and spatial features may 
significantly contribute to mean p95 heights.  

One notable trend is that of regions harvested in 2020 on “ridge” and “upper” slopes as compared to 
other slope classes (right-most column panels). Following harvest, shown in the dotted red line, mean 
p95 returns declined between the 2016 and 2023 ALS (x-axis) whereas in other slope classes, mean p95 
returns increased between 2016 and 2023. This trend may reflect the difficulty of growth of the upper 
canopy on ridge and upper slopes noting similar trends in slope-matching ESA regions (left-most panels).  
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Figure 8- Mean p95 heights for the Wauchope capture for areas harvested in 2010, 2015 & 2020 with 
points indicating separate ALS captures and coloured lines indicating landform slope classification. 
Vertical red dashed line is a visual guide of the approximate timepoint of silvicultural disturbance, noting 
the change in this timepoint across regions. Points represent mean values and error bars represent 
standard error, noting that the large number of datapoints result in precise estimation of the mean 
values. Vertical panels indicating slope classification. Note that for clarity of the longitudinal patterns, 
the y-axes for each slope classification changes across vertical panels. For all other locations see 
Appendix Figure A6.  
 

 

Key Takeaways 

Canopy top height regrowth (mean p95) occurs in most regions under a range of slope classes.  
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2.1.4 Canopy height recovery in regions affected by fire 
 

Introduction 

Fires represent significant natural disturbance events. Certain forest regions are more at risk of fire 
disturbance due to a variety of factors such as geographical location, landform properties promoting or 
inhibiting fire spread and tree species composition, amongst other factors. The retrospective LiDAR 
captures includes the Eden region which was severely burnt during the 2019/20 bushfires. To measure 
the extent of this damage, high-resolution satellite imagery was used to generate Fire Extent and 
Severity Mapping (FESM) ratings that identify the fire-affected damage across a range from unburnt to 
extreme severity. In this section, we present canopy height metrics from the Eden capture as a function 
of the FESM ratings as to understand better how natural disturbances are indexed and cross-validated 
by LiDAR measurements.  

 

Method  

For the following analysis, LiDAR data was filtered to regions within Eden (see Figure 9). Compared to 
Wauchope, Eden was heavily impacted by fires in 2019 where FESM ratings show a larger proportion of 
extreme-high damage areas (see Figure 10). We analysed all regions in Eden and calculated mean p95 
heights (m) and standard errors based on the single ALS capture conducted in 2023. Separate means are 
calculated for each slope class (e.g., Valley or Ridge), each FESM class (Extreme-high, Moderate, 
Unburnt-Low) and whether the region was in the base net area (BNA) or an environmentally significant 
area (ESA). For a description of the metric (p95) and its limitations, see Table 3. 
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Figure 9 - Map of Eden where colours indicate fire extent & severity mapping (FESM) ratings ranging 
from “unburnt” in purple to “extreme” in yellow. Note that grey-shaded regions do not contain FESM 
rating data. Click here for an interactive version of the above map. For an interactive map showing a 
similar overview of the Wauchope region, click here. 

https://uoneduau-my.sharepoint.com/:u:/g/personal/c3233895_uon_edu_au/EfToj5VLwu5GprLrghhFUJwBTgujrw2bbFfQmpgF4Gmexw?e=eKNfWD
https://uoneduau-my.sharepoint.com/:u:/g/personal/c3233895_uon_edu_au/EYPwIRPxXLBBulD3Cdqc0eMBxtUrCLZtSqtRT-2MU1emhg?e=Y56FY6
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Figure 10 - Comparison of relative FESM classifications in Wauchope (top row) compared to Eden 
(bottom row) for select regions. Each pie chart refers to separate regions within each capture where ESA 
average is composed of ESA regions across the entire capture. Other regions are separated by year of 
last harvest from 2010 harvested areas (second column from left), 2015 harvested (third column), and 
2020 harvested (right-most column) where available. Note that due to the occurrence of extensive fire 
damage in 2019/2020, no areas were harvested in 2020 in Eden. Figure A1 highlights significant extent 
of fire severity damage in Eden and the broader south coast in comparison to other forest. FESM ratings 
are traditionally categorised into five levels (unburnt, low severity, moderate, high, and extreme 
severity). For clarity, we have condensed these five levels to three where low severity is merged with 
unburnt, and high severity is merged with extreme. 
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Figure 11 - Mean p95 heights of the Eden capture as a function of fire extent and severity mapping 
(FESM) ratings (x-axis & colours) and landform class (slope – horizontal panels). ESA and BNA regions are 
shown separately (vertical panels). Colours correspond to x-axis FESM ratings. Points represent mean 
values and error bars represent standard error, noting that the large number of datapoints result in 
precise estimation of the mean with small standard errors. Note that FESM ratings are traditionally 
categorised into five levels (unburnt, low severity, moderate, high, and extreme severity). For clarity, we 
have condensed these five levels to three where low severity is merged with unburnt, and high severity 
is merged with extreme. For all other regions in the dataset, we recreate these figures for each region 
separately in Appendix Figures A17 – A22.  

 

Main results and discussion 

Differences in mean canopy height can be observed across landform (horizontal panels) and fire severity 
ratings (colours and x-axis). In Figure 11, we primarily focus on fire severity where higher FESM ratings 
(orange-coloured points) were associated with lower mean p95 heights as compared to less fire-affected 
FESM ratings (green-coloured points). Moderate p95 returns (vanilla-coloured points) were generally in-
between the higher- and lower-severity FESM classes for BNA regions. One notable exception is that in 
ESA regions, moderate-severity returns were lower than extreme-high severity ratings. A tentative 
explanation is the gradation of image colours used to generate FESM classes is less certain for 
moderate-range colours compared to extreme or unburnt regions. Generally, the patterns across fire 
severity ratings indicate that LiDAR can be used to assess natural disturbance impacts on top canopy 
heights.  
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2.1.5 Patterns of forest height regeneration post-harvest  
 
Introduction 

Understanding the dynamics of forest regeneration following harvesting events is crucial for effective 
forest management and conservation. Forests are dynamic ecosystems that undergo continuous 
growth, disturbance, and regeneration. By categorizing collected data into six height groups (0-2m, 2-
6m, 6-12m, 12-20m, 20-35m, +35m), it is possible to capture the vertical structure of the forest canopy 
and assess the distribution of vegetation across different height classes. 

 

Method 

Analysis was performed on the mean p95 heights. In the context of forest analysis using LiDAR data, 
polygons, or multi-polygons, refer to spatial units or areas within a forest landscape that are defined by 
boundaries. These boundaries could be delineated based on various factors such as administrative 
divisions, ecological features, or research design. The below analysis focuses on multi-polygons which 
represent discrete forested areas or plots where LiDAR data was collected and analysed. Each multi-
polygon may encompass a specific portion of the forest landscape, and consist of multiple pixels, serving 
as a unit for measuring canopy characteristics, such as mean p95 heights, which may be used to indicate 
the height of the upper canopy. By analysing data at this level, researchers can assess vegetation 
characteristics and regeneration patterns in different parts of the forest landscape, allowing for a more 
detailed understanding of forest dynamics and management needs.  

Mean p95 returns of a pixel was assigned to one of 6 height groups (0-2m, 2-6m, 6-12m, 12-20m, 20-
35m, +35m). Areas where harvesting is permitted but which had no record of the last harvest year were 
assigned the description ‘Unharvested BNA’. ESAs were also included as a point of comparison. For a 
description of the metric (p95) and its limitations, see Table 3. 

 

Main results and discussion 

As seen in Figure 12 this analysis delves into the dynamics of regeneration and recovery within disturbed 
forest areas, aiming to identify the factors that contribute to regeneration. Exploring the distribution of 

Key Takeaways 

Canopy top heights measured by p95 LiDAR returns reflect fire severity classifications generated 
using satelite imagery.  

Analyses across landform slopes show lower top heights for regions affected more severely by fire. 
Expected tree growth patterns over landform, e.g., lower heights on ridges but higher in valleys, are 
observable using LiDAR. 
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CHM returns by separating them into different height classes offers a nuanced perspective beyond 
mean p95 values alone and provides a more detailed depiction of forest structure. Refer to Appendix A 
for a comprehensive overview of ALS capture years across all locations. 

Figure 12 shows that forests in Eden attain p95 height distributions similar to unharvested forest areas 
approximately a decade after harvest, with minimal alterations observed over time in Coffs Harbour. 
Notably, trees in ESAs (x-axis, second column from right) within Coffs Harbour exhibit a higher 
proportion of taller trees compared to harvested areas. It remains unclear what the cause of these 
differences is, and it may be the result of different forest types, silviculture histories and/or specific 
protection measures linked to factors coinciding with tree height, such as increased ground coverage for 
animals. 

 

Figure 12 - Stacked bar plots showing the proportion of p95 heights (m) separated into height categories 
in Coffs Harbour and Eden by year of most recent harvest. This figure focuses on Coffs Harbour and Eden 
as these regions have the most complete data and depict growth patterns which contrast one another. 
For all other regions captured in 2012, 2016 and 2023 see Appendix Figure A9. The black dots show the 
mean p95 heights for each harvested group. Separate geographical areas of forest are shown in each bar 
where the x-axis marks the year of last harvest; each bar represents the regions of forest which were last 
harvested in the corresponding year. The columns on the far-right present data on areas available for 
harvest (Unharvested BNA) and environmentally significant areas (ESA) for comparison purposes. To 
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improve readability, the areas included on the x-axis are those last harvested every five years from 1958 
to 2003 and then those last harvested within the last 20 years (each year from 2003 to 2023). 
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Figure 13 - This figure compares forest height groups (by p95) in different harvested and protected areas 
in Wauchope over ALS captures from 2012, 2016 and 2023. ESAs have been excluded from harvesting for 
different reasons, with areas temporarily excluded from harvesting to protect fauna showing the biggest 
proportion of tall trees. For all other regions in these capture years see Appendix Figure A10. 

Main results and discussion 

The repeated ALS captures conducted in Wauchope reveal consistent tree height proportions across 
various protected areas, over an 11-year period. The three captures exhibit comparable proportions 
across different exemption criteria, indicating a relative stability in the composition of these forest 
ecosystems over time. While this outcome is expected in undisturbed areas, it is noteworthy that the 
proportion of mean p95 tree heights in harvested regions closely resembles that found in certain 
protected regions. 
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Figure 14 - This figure compares forest height groups (by p95) for burnt and unburnt areas across the ALS 
captures before (2016) and after (2023) FESM categorisation. The ‘Burnt’ areas aggregate over three 
different fire severity classes (Low, Moderate and Extreme) determined by satellite imagery of areas 
affected by the 2019/2020 bushfires. Regions marked as burnt/unburnt in the 2016 ALS capture 
represent a baseline measurement of regions prior to major fire disturbance. As ALS capture data is 
available in Wauchope for both 2016 and 2023, it provides a good example of pre-and post-FESM 
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categorisation data, however it should be noted that only 3% of this region was classified as ‘Burnt’, as 
shown in Figure 3.  

 

Main results and discussion 

Figure 14 shows that, overall, areas which have been affected by fire have a higher proportion of trees 
in the lower height classes than those which remain unburnt. The multiple ALS captures allow us to 
explore the impacts of fire in protected regions over time and, though there is little change for most 
protection classes, there is a noticeable increase in trees below 2m (pink) between the 2016 and 2023 
captures for several of the harvest exclusion regions which have been burnt (FMZ exclusion zones, non-
commercial forest types and fauna (wildlife) permanent exclusion zones). This indicates recent 
regeneration following fire damage in these areas. It should also be noted that the FMZ exclusion zone 
contains more small trees than any other protected region in both burnt and unburnt areas, suggesting 
that regions which have been excluded for this reason likely contain smaller trees in general. 
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Figure 15 - Stacked bar plots showing the proportion of p95 heights (m) in Wauchope for three types of 
slope (Lower, Middle and Upper; x-axis) and FESM classes (Unburnt, Low Severity and Extreme Severity; 
y-axis). The black dots show the mean p95 heights for each harvested group. 

 

Main results and discussion 

Figure 15 explores the impact of different fire severity and slope types on forest structure in Wauchope. 
Importantly, Figure 15 shows little difference across the slope types when the fire severity was extreme 
and most trees short, but gradual decreases in height as increases across the low fire severity and 
unburnt regions. This interaction between fire severity and slope type is confirmed by a 3x3 ANOVA 
which shows the impact of fire severity is different across the slope types, F(4, 420725) = 156.60, p < 
.001. Additionally, there was a main effect of slope, whereby trees on lower slopes have higher mean 
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p95 values (M = 36.81m) than middle (M = 32.80m) and upper slopes (M = 28.94m), F(2, 420725) = 
7740.90, p < .001, regardless of fire severity. There was also a main effect of fire such that areas which 
remain unburnt (M = 33.14m) have a marginally higher mean p95 height than those in the low fire 
severity category (M = 32.26m), which are both higher again than the areas affected by extreme fire 
damage (M = 24.31m), F(2, 420725) = 4578.8, p < .001. 

 

Figure 16 - Stacked bar plots showing the proportion of p95 heights (m) in Eden for three types of slope 
(Lower, Middle and Upper; x-axis) and FESM classes (Unburnt, Low Severity and Extreme Severity; y-
axis). The black dots show the mean p95 heights for each harvested group. 

Main results and discussion 

While the Wauchope findings in Figure 15 are interesting, it is important to note that only 3% of 
Wauchope was affected by fire at the time of the FESM categorisation. Eden provides an interesting 
contrast as significantly more of the forest in this region (approx. 82% - see Figure 3) was affected by fire 
in the years preceding the 2023 ALS capture. Figure 16 shows that slope type and fire severity have a 
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similar impact in Eden to those demonstrated in Wauchope, whereby increases in both fire severity and 
slope result in lower p95 values. While the differential impact appears less noticeable in Eden (Figure 16) 
when compared with Wauchope (Figure 15), a 3x3 ANOVA shows the interaction between slope type 
and fire severity is still statistically significant, meaning the differential impact of fire across slope types is 
reliably observed through LiDAR data, F(4, 247456) = 30.29, p < .001. It should be noted, however, that 
the large number of data points used to run this analysis increases the likelihood of finding a statistically 
significant difference, even when the effect is small, and results should be interpreted with caution. With 
that in mind, the visual pattern shown in Figure 16 indicate that, though statistically significant, the 
differential impact of fire across the slope types is minimal, especially when compared to the patterns 
evident in Wauchope.  

 
 

2.1.6 Modelling of canopy top height recovery post-harvest across landform classes, 
harvesting practices and FESM classes 
 

Introduction 

Modelling canopy top height recovery using p95 to predict its values over specified years of growth can 
help us further understand forest dynamics. Moreover, integrating slope types, harvesting practices and 
FESM classes into the model enables a comprehensive understanding of the recovery rate across varying 
terrain and harvesting methodologies. This analysis can provide insight into how to optimise both 
harvesting and recovery.  
 
Method  

Data from the most recent ALS conducted 2023 was used for the following analysis. The data was then 
filtered to trees that were available for harvest. ‘HarvestDetails’ were grouped into light and heavy 
silviculture. Low frequency ‘EndYears’ were removed and the mean for p95 was calculated for the 
remaining years. To model canopy top height recovery after harvesting, the year when trees were 
harvested was converted to years of growth. This allows us to predict canopy top height, given how long 

Key Takeaways 

Looking at the proportion of trees in different height categories gives a deeper insight into forest 
structure than mean p95 return heights alone.   

The analysis underscores the stability of tree height proportions across protected areas in Wauchope 
over an 11-year span, suggesting a consistent composition of forest ecosystems. Notably, harvested 
areas exhibit similar proportions of mean p95 tree heights compared to some protected areas within 
state forest, highlighting potential similarities in canopy structure between areas managed for timber 
production and areas managed for conservation. 

The larger proportion of taller trees in regions which have been recently affected by fire and the 
differential impact of fire severity on forest structure across different slope types can be reliably 
obtained with LiDAR data. 
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trees have had to grow. A multiple regression model was applied to a logistic-approach-to-asymptote 
transform of mean p95 (Luo, Zhang, Zhou, Chen, & Tian, 2018) for all combinations of slope type, 
harvest groups and FESM classes for each ALS capture. The model was used to predict values of 
transformed mean p95 for given years of growth. Reversing the transform yields mean p95, where the 
mean p95 predictions have an asymptotic value equal to the 99.9th percentile of p95. 
 
Main results and discussion 

 
Figure 17 - This figure compares canopy top height (as measured by mean p95 height) recovery 
predictions for Coffs Harbour across different slope and FESM class for each harvest group. Preceding 
the vertical line are the model’s account of observed data and following is the model’s prediction of p95 
height for given years of growth. Note that predictions appear linear because p95 does not converge on 
the asymptotic value equal to the 99.9th percentile of p95 height. See Appendix Figures A12-A16 for 
recovery predictions across other capture areas. 
 

Table 4. Model Coefficients 
 Coefficient p-value 
Intercept 30.55 <.001 
Years 0.291 <.001 
Heavy silviculture 1.509 <.001 
Valley 3.214 <.001 
Lower slope 2.707 <.001 
Middle slope 2.824 <.001 
Upper slope 2.781 <.001 
Ridge 2.755 <.001 
Low severity 6.266 <.001 
Moderate severity 2.643 .12 
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A multiple regression was applied to data and the model was used to predict transformed p95. ‘Light 
silviculture’, ‘flat slope’ and ‘unburnt’ was used as reference levels for slope types and FESM classes and 
harvest group, respectively. Figure 17 shows the models prediction for mean p95 height recovery which 
incorporates slope types, FESM classes and harvest group to provide a description of the rate of 
recovery across these different factors. Table 4 details the model coefficients and shows that valley, 
lower, middle, upper and ridge slope types are associated with a significant increase in mean p95 height 
with reference to flat slopes. It also shows that the low severity FESM class is associated with a 
significant increase in mean p95 height with reference to the unburnt FESM class. Table 4 shows that 
the heavy silviculture grouping is correlated with an increase in p95 height compared to the light 
silviculture grouping. It is worth noting, however, that beyond this regression analysis there is strong 
evidence of selection factors for silvicultural practice (e.g., heavy vs. light comparisons in Figure 5, 
Section 2.1.2) whereby particular silvicultural practices are selected because of properties about the 
tree, e.g., taller, more diverse forests are selected for heavy silvicultural practices, but not smaller 
forests.  
 
LiDAR data and analyses provide a rich source of data, of which the current analyses looks at a select 
cross section. Together, LiDAR provide an additional dataset that can inform existing growth models 
used by FCNSW based on long-term inventory plots. 
 

 

2.2 Canopy coverage analysis 
 
Introduction 

Mean canopy coverage serves as a fundamental metric in the assessment of forest ecosystems, offering 
valuable insights into forest health, habitat suitability, and informing future forestry management and 
conservation practices. This metric provides a quantitative measure of the extent and density of 
vegetation canopy within a given area, thus serving as a proxy for overall vegetation abundance and 
distribution. Canopy coverage, typically expressed as a percentage, represents the fraction of the 
ground area obscured by the vertical projection of vegetation. By quantifying canopy coverage, 
researchers and land managers can assess the state of forest ecosystems, monitor changes over time, 
and make informed decisions regarding conservation efforts and sustainable forest management 
practices.  

 

Key Takeaways 

Modelling canopy top height recovery and incorporating slope types, harvesting practices and FESM 
classess can provide a description of the rate of recovery across these different factors. This analysis can 
provide insight into how to optimise both harvesting and recovery, and provides an added source of data 
to inform existing growth models.  
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Methods 

Mean Canopy Coverage was computed for each pixel (30m x 30m) as a percentage, by calculating the 
number of first returns over 2m divided by all first returns. The output refers to the extent and density 
of vegetation canopy within the studied area. As Canopy Coverage is usually represented as a 
percentage – it represents the fraction of the ground area that is obscured by the vertical projection of 
vegetation. Higher values of mean canopy coverage denote greater vegetation density, indicating lush, 
densely forested areas with abundant canopy cover. Conversely, lower mean canopy coverage values 
signify sparser vegetation cover, suggesting either areas with less dense vegetation or more open 
landscapes. 

 

2.2.1 Canopy coverage recovery following harvesting activities 
 
Introduction 

Canopy coverage, representing the proportion of ground obscured by vegetation canopy, serves as a 
vital indicator of forest health, habitat suitability, and ecosystem productivity. Monitoring changes in 
canopy coverage following harvesting activities provides valuable insights into vegetation recovery, 
ecosystem resilience, and the effectiveness of management interventions. 

Methods 

LiDAR data was filtered to regions within Wauchope that were last harvested in years 2010, 2015, and 
2020. For each harvest year, mean canopy coverage (%) and standard errors for the same geographical 
regions are calculated based on ALS capture conducted in 2012, 2016, and 2023. Canopy coverage is 
calculated as the percentage of returns above 2m and designates the proportion of the ground that is 
obscured by the canopy foliage. Note that, although regions can be harvested more than once, the most 
recent harvest year is shown across the panels. For a description of the metric (canopy cover) and its 
limitations, see Table 3. 
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Figure 18 – Mean canopy coverage for areas in Wauchope harvested in 2010, 2015 & 2020 with points 
indicating separate ALS captures. Vertical red dashed line is a visual guide of the approximate timepoint 
of silvicultural disturbance, noting the change in this timepoint across regions. Points represent mean 
values, noting that the large number of datapoints result in precise estimation of the mean with 
negligible standard errors. See Appendix Figure A5 for mean canopy coverage across all regions. 

 

Main results and discussion 

Canopy coverage, as measured by the proportion of ground returns, shows foliage recovery after 
harvest. Across panels, harvest events are signified in the timepoints on the dash-dotted red line. 
Canopy-coverage-recovery is clearest in the third-from-left panel for regions harvested in 2015 where 
ALS captures were taken prior to and after the harvesting events. For these regions, mean canopy 
coverage measured in 2016 were 55.7% (se = 0.16%) as compared to 77.0% (se = 0.11%) measured in 
2012. By 2023, the mean canopy coverage for the same regions had recovered beyond pre-harvest 
coverage to 83.9% (se = 0.11).  

Regrowth canopy foliage also occurs following harvesting in the 2010-harvested regions but notably not 
in the 2020-harvested regions. It is unclear why mean canopy coverage decreases between the 2016 
and 2023 captures; however, the following analysis of harvesting practice indicates this decline is not 
present for all regions. However, it is worth noting the number of recovery years between harvest and 
LiDAR captures was only 3 years for the 2020-harvested regions and seven years for 2015-harvested 
regions.  

 

 

Key Takeaways 

Canopy coverage recovers following harvesting practices.   
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2.2.2 Canopy coverage recovery in harvested regions: comparing light and heavy 
harvesting practices 
 
Introduction 

Within the realm of forestry management, understanding the impact of harvesting practices on canopy 
coverage is crucial for assessing forest regeneration and long-term sustainability. Different areas are 
subject to different harvesting practices. The differentiation between harvesting practices lies in their 
intensity and extent of tree removal, with "light" practices typically involving selective thinning and 
minimal disturbance to the forest canopy, while "heavy" practices encompass removal of a high 
proportion of non-habitat trees, which may result in more substantial alteration of canopy structure. 
 

Method 

LiDAR data filtered to regions within Wauchope that were last harvested in years 2010, 2015, and 2020. 
For each harvest year, mean canopy coverage (%) and standard errors for the same geographical regions 
are calculated based on ALS capture conducted in 2012, 2016, and 2023. Canopy cover was calculated 
using the first returns from the normalized point clouds from ALS data, using a grid size of 30 x 30 m. 
Note that, although regions can be harvested more than once, the most recent harvest year is shown 
across the panels. For a description of the metric (canopy cover) and its limitations, see Table 3. 

 

 

Figure 19 - Mean canopy coverage for areas in Wauchope harvested in 2010, 2015 and 2020 with points 
indicating separate ALS captures (x-axis) and coloured lines indicating type of silvicultural practice (heavy 
vs. light practices). Vertical red dashed line is a visual guide of the approximate timepoint of silvicultural 
disturbance, noting the change in this timepoint across regions. For clarity, we present only “light” (blue) 
and “heavy” (green) silvicultural practices in this figure, noting that other silvicultural practices, such as 
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mixed practices e.g., alternate coupe, are present in the data. For analyses of other capture locations 
areas see Appendix Figure A2. 

Main results and discussion 

Regrowth in foliage as measured by canopy coverage for harvesting practices classified as “heavy” (red 
points) and "light” (blue points). Broadly, canopy coverage exhibits similar regrowth patterns across 
heavy and light silvicultural practices. As in Figure 18, the notable exception to canopy cover recovery is 
for regions that were harvested in 2020 (right-most panel) where ‘light’ harvesting practices resulted in 
more reduction in canopy coverage. For 2020, light harvesting practices mostly consisted of STS-medium 
silvicultural practice (90%) and to a lesser extent, STS-light (10%). Heavy harvesting practices included 
STS-heavy (84%) and STS regen (16%). 

 

 
 

2.2.3 Canopy coverage across fire-impacted regions 
 
Introduction 
To examine the impact of fires on canopy coverage, we switched our focus onto Eden where the 2023 
ALS capture provides an analysis of canopy coverage after the 2019/2020 bushfires. For reference, Figure 
9 provides a map of the Eden capture locations. Compared to Wauchope, Eden was heavily impacted by 
fires where FESM ratings show a larger proportion of extreme-high severity areas (see Figure 10). 

 
Method 
For the following analysis, LiDAR data was filtered to areas within Eden. We analysed all regions in Eden 
and calculated mean canopy coverage (%) and standard errors based on the single and only ALS capture 
conducted in 2023. Separate means are calculated for each slope class (e.g., Valley or Ridge), each FESM 
class (Extreme-high, Moderate, Unburnt-Low) and whether the region was in the base net area (BNA) or 
an environmentally significant area (ESA). 
 

Key Takeaways 

In general, areas subjected to light and heavy harvesting practices show similar recovery trends as 
measured by canopy coverage. 
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Figure 20 - Mean canopy cover of the Eden capture as a function of fire extent and severity mapping 
(FESM) ratings (x-axis) and landform class (slope – horizontal panels). ESA and BNA regions are shown 
separately (vertical panels) and colours correspond to x-axis FESM ratings.  Points represent mean 
values and error bars represent standard error, noting that the large number of datapoints result in 
precise estimation of the mean with generally small standard error values. For all other regions in the 
dataset, we recreate these figures for each region separately in Appendix Figures A23 – A28. 
 
Main results and discussion 

Differences in mean canopy coverage can be observed across landform (horizontal panels) and fire 
severity ratings (colours and x-axis). In Figure 20, we primarily focus on fire severity where higher FESM 
ratings (orange-coloured points) were associated with lower mean canopy coverage proportions as 
compared to less fire-affected FESM ratings (green-coloured points). Moderate points (vanilla-coloured 
points) were generally in-between higher and lower FESM classes with notable exceptions in ESA with 
landform classes of upper (bottom-row, second-from-right panel) and ridge (bottom-row, right-most 
panel). In general, disturbance due to bushfires can be observed combining satellite-image based FESM 
ratings and LiDAR metrics. 

 

 
 

Key Takeaways 

Reductions in canopy cover due to natural disturbances can be reliably observed via LIDAR.  
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2.3 Canopy foliage density analysis 
 
Introduction 

Canopy foliage density serves as a fundamental indicator of forest structure, providing insights into 
biomass distribution, habitat suitability, and ecosystem functioning. By accurately quantifying canopy 
foliage density, researchers can better understand the vertical arrangement of vegetation within 
forested landscapes, which is essential for assessing habitat quality, species diversity, and carbon 
storage capacity. Additionally, canopy foliage density metrics derived from LiDAR data enable precise 
monitoring of changes in forest structure over time, facilitating informed forest management decisions, 
conservation planning, and mitigation strategies for environmental challenges such as natural disasters 
and habitat fragmentation.  

 
Methods 

Calculation of Canopy Foliage Density: Canopy foliage density was derived from LiDAR data by calculating 
the difference between the 95th percentile (p95) and 50th percentile (p50) tree-height metrics. 
Intuitively, this provides a measure of the “thickness” of the canopy, because the 95th percentile is close 
to the top of the canopy and the 50th percentile (median return) is close to the bottom of the canopy. 

 

Figure 21 - Plot showing distribution of height values, with the 50th and 95th percentiles shown in red. 
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2.3.1. Assessing change of canopy foliage density dynamics post-harvest using combined 
metrics: p95, p50, and canopy coverages 
 

Introduction 
ALS is a powerful tool for understanding forestry dynamics and many metrics can be derived that 
characterise forest structure. In isolation, each metric is suited to understanding a different structural 
feature of the forest. For example, top height canopy is better understood with p95 returns whereas 
canopy foliage regrowth is better measured by canopy coverage. Beyond these individual metrics, 
however, stakeholders are often interested in commonalities across ALS measurements to understand 
the overarching trends across the forest.  

To do so, we combine three common metrics - top canopy (p95), understory regrowth (p50), and canopy 
occupancy (canopy coverage %) - into a single analysis to provide a more comprehensive view of forest 
dynamics. This analysis was inspired by voxel-based analyses with three-dimensional data, described 
further in Appendix Table B4. We call this novel composite visualisation “canopy foliage density” to 
understand better the vertical depth (i.e., distance between p50 and p95) of canopy foliage. Together 
with more established indices, the main benefit of the following analyses is that it provides an 
overarching visualisation for characterising forest dynamics over time.  

Methods 

Three metrics, p95, p50, and canopy coverages, combined to illustrate canopy foliage density. Panels in 
Figure 22 show separate spatial locations within Wauchope that were last harvested in 2010, 2015, or 
2020. Separate LiDAR captures shown on the x-axis as a rectangle. Canopy height metrics are displayed 
as a rectangle where the mean p95 return height (m) is shown by the upper edge of the rectangle, and 
mean p50 return height (m) is shown by the lower edge of the rectangle. Canopy coverage, as the 
proportion of area covered by the canopy, is displayed as a decimal within the rectangle. The harvesting 
timepoint is depicted with a red dotted line. Note that the harvesting timepoint changes across panels 
as each location was harvested in a different year. Harvesting timepoint and mean p95 height (m) are 
commensurate with Figure 3, and canopy coverage is commensurate with Figure 11. For a description of 
the three metrics (p95, p50, & canopy cover) and their limitations, see Table 3. 
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Figure 22 – Combined metrics of canopy foliage density using mean p95 heights, mean p50 heights and 
canopy cover. See Appendix Figure A4 for all other regions. 

 

Main results and discussion 

Figure 22 aims to combine key metrics of canopy growth. Mean p95 heights (upper edge of rectangles), 
p50 heights (lower edge of rectangles), and canopy coverage (decimals in rectangles) are three key 
datapoints to understanding canopy foliage density and recovery following harvesting events.  

As an example, consider the second-from-right panel for locations harvested in 2015. Canopy foliage 
density is measured as the space between mean p95 height and mean p50 height shown visually by the 
height of the rectangle. Longer height indicates less concentrated canopy foliage density where shorter 
heights indicate more concentrated canopy foliage densities.  

These 2015-harvest regions show declines in canopy coverage (decimals in left-2012-rectangle and 
central-2016-rectangles, 0.77 vs. 0.56), and top canopy p95 height (upper edge of rectangles, 34.5m vs.  
30.9m) following harvesting. Canopy foliage density is also less concentrated where p50 depth is lower 
(lower edge of rectangles, 18.5m vs. 7.37m). Despite these changes, the 2023 ALS capture (right-most 
rectangle) shows recovery of canopy coverage and canopy foliage density. 2023-heights of the lower 
canopy depth (p50) and upper canopy height (p95) increase proportionally to 2016, shown by shifted-
same height bars. Canopy coverage also increased by 2023 from 0.56 measured in 2016 to 0.84 in 2023.  
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Key Takeaways 

Canopy foliage density can be a useful means to visualise canopy characteristics using three separate, but 
related, LiDAR metrics: top of canopy (p95), bottom of canopy (p50) and canopy cover.   



   
 

  47 
 

2.4 Skew analysis 
 
Introduction 

Interpreting LiDAR-derived metrics in the context of on-ground canopy structure and management 
practices is essential for gaining meaningful insights into forest dynamics and informing effective 
management strategies. The relationship between LiDAR metrics and canopy characteristics can vary 
depending on location-specific factors and forest types (Haywood and Stone, 2010). For instance, 
positive skewness values may indicate sparse canopies, while negative values may suggest denser 
canopy cover. Such interpretations underscore the importance of understanding the nuances of LiDAR-
derived metrics within specific ecological contexts. 

 

Methods 

To examine forest structure and density, mean skew was calculated. A forest area exhibiting a negative 
skew indicates most of the occupied volume towards the top, whereas a positive skew suggests more 
volume towards the bottom (see Figure 23). It is important to note that a higher skew does not 
necessarily indicate taller trees, but rather a larger concentration of volume in one tail of the distribution 
(see Figure 23). 

 

Figure 23 - Example of positive and negative skew values. Negative skew includes most of the occupied 
volume being concentrated towards the top, indicating taller trees or denser canopy cover at higher 
positions within the point cloud. As seen on the right, forest areas with positive skew indicate occupied 
volume concentration towards the bottom suggesting shorter trees or denser vegetation closer to the 
ground.  

To enhance interpretability of the graphs, the axes of the skew plots of this report have been inverted, 
such that higher points on the plots represent denser areas. 
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2.4.1 Analysing longitudinal trends in vegetation density using skewness: impacts of 
harvesting and topographical landform 
 
Introduction 

The assessment of vegetation density, indicated by skewness values derived from LiDAR data, holds 
significance in understanding ecosystem dynamics across diverse landscapes. Skewness serves as a 
useful metric for assessing canopy structure and density and may provide information that is helpful in 
better understanding the distribution of biomass in the forest’s vertical profile. By examining 
longitudinal trends in skewness across different landforms and regions we can gain a deeper 
understanding of forest ecosystems' resilience and inform adaptive management practices tailored to 
diverse landscapes. 

 
Methods 

This analysis examines pixel mean skew values as a measure of vegetation density within forested 
regions. Data encompassing areas last harvested in 2010, 2015, and those not yet harvested, but where 
harvesting is permissible (“unharvested BNA”), were included for comprehensive analysis. To aid in the 
interpretation of the graphs, an INVERSION OF AXES has been implemented, ensuring that denser areas 
which are higher from the ground are visually represented as higher points on the plots. For a 
description of the metric (skewness) and its limitations, see Table 3. 

 

Main results and discussion 

The following figures depict longitudinal trends in vegetation density derived from skewness 
measurements, highlighting variations across topographical landforms and harvested areas. 

 

Figure 24 - Skew (y-axis) of distinct forest regions, categorized by harvesting years (2010, 2015) and 
unharvested areas, measured at different time points (represented on the x-axis). Forest regions are 
presented as separate horizontal lines, with dashed vertical lines marking harvest events in 2010 (red) 
and 2015 (blue). Negative skew values, representing greater density of canopy vegetation further from 
the ground, are visually higher on the plot, while positive skew values, indicating higher density at lower 
heights, appear lower. See Appendix Figure A11 for all other regions. 
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There is a general trend showing vegetation thickness moves further from the ground over time. In 
Casino and Coffs Harbour, all forest analysed (those harvested in 2010, 2015 and unharvested) show 
shifts in skew between the 2012 and 2023 ALS captures whereby the mass of the canopy rises, even 
when those regions have been harvested. In both these regions, and in Wauchope, the areas harvested 
in 2010 (two years prior to the first ALS capture; shown in red) show the largest decrease in skew. This 
may be the result of rapid regeneration in the decade following the harvest in these areas.  

The 2016 ALS capture in Wauchope provides additional information about the short-term effects of 
harvesting on skew, beyond what can be inferred from other locations with less ALS capture data. The 
change in skew for the areas in Wauchope harvested one year before the 2016 capture (2015 harvested 
regions shown in blue) suggests there are changes in forest structure immediately following a harvest 
event, but this is recovered quickly. Given the 2010 harvested areas (shown in red) in Casino have 
regained comparable skew to those not harvested by the time of the 2012 capture, recovery from 
harvest may occur within as little as two years in some regions but the data from Coffs Harbour and 
Wauchope indicate it is likely to take a little longer in others. (approximately 10 years).  

 

 

Figure 25 - Skew (y-axis) of distinct forest regions, categorized by harvesting years (2010, 2015) and 
unharvested areas, measured at different time points (represented on the x-axis), split by fire history 
status. The ‘Burnt’ areas aggregate over different fire severity classes. 

It is important to note that other disturbance events, beyond harvesting, occur which may have a 
significant impact on the forest’s structure. To demonstrate the influence of fire, Figure 25 splits the data 
shown in Figure 24 into burnt and unburnt regions. This figure shows a general reduction in the rate of 
skew recovery between the 2012 and 2023 captures. While the general trends are the same, where skew 
decreases indicating the canopy vegetation grows further from the ground over time, the rate at which 
this occurs is somewhat slower for the burnt (top row) regions when compared to those which have not 
been affected by fire (bottom row).    
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Figure 26 - Skew (y-axis) for each of the ALS captures (x-axis) for areas harvested in 2010 (red), 2015 
(blue) and never harvested (grey) over selected slope types within Coffs Harbour and Wauchope. The 
dashed horizontal lines represent the 2012 and 2015 harvesting events, respectively. The different plots 
contrast the effects of the three most common slope types in Wauchope (Lower, Middle, and Upper).  

To examine the impact of slope on skew over time, we focus on Lower, Middle, and Upper slope types in 
Wauchope and Coffs Harbour, representing areas harvested at different time points. Appendix Figure 
A11 contains a comprehensive depiction of all slope types and locations. Figure 26 demonstrates the 
influence of slope on skew trends over time in these regions. Despite similar overall trends—skew 
shifting away from the ground over time—different slope types exhibit varying rates of change. Notably, 
the 2015 harvest event (blue) results in a significant dip in skew for the 2016 capture in Wauchope, with 
skew showing a trend toward recovery in 2023. In contrast, skew trends for the regions harvested in 
2015 in Coffs Harbour remain more stable between the 2012 and 2023 captures, likely because the 
forest has largely recovered in the 8 years between the harvest event and the 2023 ALS capture. These 
findings underscore the importance of additional ALS capture data in enhancing our understanding of 
the impact of silvicultural practices over time.  

Figure 26 also shows the impact of slope on skew recovery following harvest. In general, the red points 
reflecting the areas harvested in 2010 show a steeper trend toward skew which matches those of 
unharvested BNA regions as slope increases. Across Coffs Harbour and Wauchope, the skew trends over 
time are steepest in the upper slope regions and more gradual in the lower slope areas. 
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Figure 27 - Skew (y-axis) for each of the ALS captures (x-axis) for areas within Wauchope harvested in 
2010 (red), 2015 (blue) and never harvested (grey) over selected slope types and fire history status. 

To explore potential interactions between slope type and fire severity (which were evident in Section 
2.1.4), Figure 27 shows different slope type regions in Wauchope which have been affected by fire or 
remain unburnt. Wauchope was chosen for this analysis because the additional temporal data in this 
region (2016 ALS capture) allows for a more nuanced comparison between burnt and unburnt areas. This 
figure shows a clear difference between the rate of skew recovery in the burnt and unburnt areas, 
whereby unburnt regions regain skew which is comparable to that pre-harvest within about 8 years post-
harvest, but those regions affected by fire are unable to do so. These patterns appear consistent across 
the different slope types. It is worth noting that, while the skew of the unharvested BNAs is unchanged 
over time in the burnt regions, the canopy vegetation continues to trend away from the ground in 
regions which are not affected by fire. This means that the fire has had an impact on the forest structure 
of both harvested and unharvested areas.  

 

 

Key Takeaways 

Harvesting events in 2010 and 2015 are clearly reflected in the skewness data, with notable dips observed 
in skew following these events, particularly in Wauchope. However, skew returns to pre-harvest levels 
within a short period of time, indicating the resilience of forest ecosystems to silvicultural practices. 

A more nuanced understanding of forest structure over time can be obtained with more regular ALS 
capture data.  
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3. Recommendations 
1. Publicly Accessible and richly interactive data. Future reports could incorporate interactive maps to 
present spatial data effectively. Interactive maps offer dynamic platforms that enable users to explore 
geographic regions and spatial datasets in an intuitive and engaging manner. By integrating interactive 
mapping technologies such as web-based mapping applications, stakeholders and the public can be 
provided with valuable opportunities to interact with forest-related data in meaningful ways. In addition 
to interactive maps, ensuring the underlying data is publicly accessible and interactive, enhances the 
transparency and accessibility of forest-related information. By providing the raw data along with 
interactive visualisation tools, stakeholders and the public can gain a deeper understanding of forestry 
dynamics, encouraging a more engaged community. This approach not only promotes transparency in 
research but can also empower individual users to conduct their own analyses, contributing to 
collaborative efforts in forest management and conservation.  

2. Long-Term Monitoring. Longitudinal studies with continuous ALS captures, over extended periods of 
time could be utilised to track forest dynamics and regeneration patterns more comprehensively. Long-
term monitoring can provide valuable insights into the long-term effects of harvesting practices, natural 
disasters, and changes in climate on forest ecosystems.  

3. Upcoming Technologies. For future research, it is advisable to remain aware of emerging 
technologies, such as ‘Geiger-mode LiDAR’. Geiger-mode LiDAR can acquire data at higher altitudes and 
presents an opportunity to significantly increase coverage extent while maintaining, or even enhancing 
spatial resolution. Incorporating Geiger-mode LiDAR technology in future studies may enable more 
comprehensive and efficient forest assessments. 

4. Conclusions 
In conclusion, the comprehensive analysis presented in this report provides insights into the dynamics of 
forest structure, composition, and regeneration following harvesting events in NSW State Forests. By 
integrating ALS technology with field data and employing various analytical methods, including canopy 
height, canopy coverage, canopy foliage density, and skew analysis, this research offers a multifaceted 
understanding of forest ecosystems. The examination of mean p95 heights across different slope classes 
and harvested regions reveals nuanced patterns of forest regeneration and growth over time. 
Additionally, the predictive modelling of canopy top height recovery offers insights into the factors 
influencing regeneration rates across different landform classes and harvesting practices. Furthermore, 
the assessment of canopy coverage and density highlights the effectiveness of different harvesting 
practices and their impact on vegetation recovery. Overall, this report contributes to the ongoing efforts 
in forest management and conservation by providing a deeper understanding of changes in forest 
structure over time and potential relationships to disturbance events in NSW State Forests. 
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Appendix A: Supplementary figures for all ALS captures 
 

 

 

Figure A1 - Fire extent and severity mapping ratings (FESM) for all captures. Note that FESM ratings are 
traditionally categorised into five levels (unburnt, low severity, moderate, high, and extreme severity). 
For clarity, we have condensed these five levels to three where low severity is merged with unburnt, and 
high severity is merged with extreme.  
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Figure A2 - Mean p95 heights across all forest capture regions (vertical panels). Across the panels, the 
vertical red dashed line is a visual guide of the approximate timepoint of silvicultural disturbance, noting 
the change in this timepoint across regions (horizontal panels). 
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Figure A3 - Mean p95 heights across all forest capture regions (vertical panels) as a function of 
silvicultural practice. Across the panels, the vertical red dashed line is a visual guide of the approximate 
timepoint of silvicultural disturbance, noting the change in this timepoint across regions (horizontal 
panels). For clarity, we present only “light” (blue) and “heavy” (green) silvicultural practices in this figure, 
noting that other silvicultural practices, such as mixed practices or salvage harvests, are present in the 
data. 
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Figure A4 - Corresponding panel to Figure 22 in the main report for canopy foliage density for all regions. 
Three metrics, p95, p50, and canopy coverages, combined to illustrate canopy foliage density. Horizontal 
panels show separate spatial locations that were last harvested in 2010, 2015, or 2020. Vertical panels 
show different forest regions. Separate LiDAR captures shown on the x-axis as a rectangle. Canopy height 
metrics are displayed as a rectangle where the mean p95 return height (m) is shown by the upper edge 
of the rectangle, and mean p50 return height (m) is shown by the lower edge of the rectangle. Canopy 
coverage, as the proportion of area covered by the canopy, is displayed as a decimal within the 
rectangle. The harvesting time point is depicted with a red dotted line. Note that the harvesting 
timepoint changes across panels as each location was harvested in a different year.  
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Figure A5 - Plots outlining overview of canopy coverage for multiple captures across all forest regions 
with separate lines indicating silvicultural method. Across the panels, the vertical red dashed line is a 
visual guide of the approximate timepoint of silvicultural disturbance, noting the change in this 
timepoint across regions (horizontal panels). 
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Figure A6 - Plots outlining overview of mean p95 heights for multiple captures with separate lines 
indicating forest capture region and vertical panels indicating slope classification. Across the panels, the 
vertical red dashed line is a visual guide of the approximate timepoint of silvicultural disturbance, noting 
the change in this timepoint across regions (horizontal panels). 
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Figure A7 - Pie charts outlining percentage of slope classifications in different forest capture regions. 
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Figure A8.1 - Maps of forest capture regions, polygons grouped by LLA (Casino). 
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Figure A8.2 - Maps of forest capture regions, polygons grouped by LLA (Batemans Bay). 
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Figure A8.3 - Maps of forest capture regions, polygons grouped by LLA (Coffs Harbour). 
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Figure A8.4 - Maps of forest capture regions, polygons grouped by LLA (Styx River). 
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Figure A8.5 - Maps of forest capture regions, polygons grouped by LLA (Bulahdelah). 
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Figure A8.6 - Maps of forest capture regions, polygons grouped by LLA (Wauchope). 
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Figure A8.7 - Maps of Forest Capture Regions, polygons grouped by LLA (Eden).  
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Figure A9 - Stacked plots of height classifications for multiple ALS captures with x-axis indicating year of 
last harvest and vertical panels indicating forest capture region. 
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Figure A10 – Stacked plots of height classifications for multiple ALS captures with x-axis indicating 
harvested, unharvested, or reason for exclusion and vertical panels indicating separate forest capture 
region.  
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Figure A11 – Stacked plots of height classifications for all 2023 ALS captures with x-axis indicating 
harvested, unharvested, or reason for exclusion and vertical panels indicating separate forest capture 
region. 
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Figure A12 - Plots outlining skew of returns for multiple ALS captures and whether areas were harvested 
or unharvested with horizontal panels indicating different slope classifications and vertical panels 
indicating different forest capture regions 
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Figure A13 - Plots outlining skew of returns for multiple ALS captures and whether areas were harvested 
or unharvested with horizontal panels indicating different slope classifications and vertical panels 
indicating different forest capture regions and burn status. 

 



   
 

  83 
 

 

 

 

Figure A14 - This figure models canopy top height recovery for Batemans Bay across different slope 
types for each harvest group and FESM class. Preceding the vertical line are the model’s account of data 
and following is the model’s prediction of p95 height. Note that predictions appear linear because p95 
does not converge on the asymptotic value equal to the 99th percentile of p95.  

 

 

Figure A15 - Modelling of canopy top height recovery for Casino 
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Figure A16 - Modelling of canopy top height recovery for Eden 

 

Figure A17 - Modelling of canopy top height recovery for Styx River 
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Figure A18 - Modelling of canopy top height recovery for Wauchope 

 

 

Figure A19 - Modelling of canopy top height recovery for Bulahdelah. Note that FESM class is absent in 
this figure because there is no FESM class data in the dataset. 
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Figure A20. Mean p95 height returns for the Wauchope region as measured in the 2023 ALS capture. 
Points represent mean values and error bars represent standard errors. Landform slope class is 
presented across horizontal panels and base net area (BNA) vs. environmentally significant area (ESA) 
status is shown on vertical panels. FESM is categorised into three categories shown in separate colours. 
Note that although we show the mean values, each region is composed of varying landform features 
(see Figure A7 for slope composition within each region) and fire severity impacts (see Figure A1 for 
FESM composition within each region). These data are the companion data that match the Eden data 
shown in Figure 11 of the main report.  
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Figure A21. Mean p95 height returns for the Styx River region as measured in the 2023 ALS capture. 
Points represent mean values and error bars represent standard errors. Landform slope class is 
presented across horizontal panels and base net area (BNA) vs. environmentally significant area (ESA) 
status is shown on vertical panels. FESM is categorised into three categories shown in separate colours. 
Note that although we show the mean values, each region is composed of varying landform features 
(see Figure A7 for slope composition within each region) and fire severity impacts (see Figure A1 for 
FESM composition within each region). These data are the companion data that match the Eden data 
shown in Figure 11 of the main report. 
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Figure A22. Mean p95 height returns for the Coffs Harbour region as measured in the 2023 ALS capture. 
Points represent mean values and error bars represent standard errors. Landform slope class is 
presented across horizontal panels and base net area (BNA) vs. environmentally significant area (ESA) 
status is shown on vertical panels. FESM is categorised into three categories shown in separate colours. 
Note that although we show the mean values, each region is composed of varying landform features 
(see Figure A7 for slope composition within each region) and fire severity impacts (see Figure A1 for 
FESM composition within each region). These data are the companion data that match the Eden data 
shown in Figure 11 of the main report. 
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Figure A23. Mean p95 height returns for the Casino region as measured in the 2023 ALS capture. Points 
represent mean values and error bars represent standard errors. Landform slope class is presented 
across horizontal panels and base net area (BNA) vs. environmentally significant area (ESA) status is 
shown on vertical panels. FESM is categorised into three categories shown in separate colours. Note 
that although we show the mean values, each region is composed of varying landform features (see 
Figure A7 for slope composition within each region) and fire severity impacts (see Figure A1 for FESM 
composition within each region). These data are the companion data that match the Eden data shown in 
Figure 11 of the main report. 
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Figure A24. Mean p95 height returns for the Bulahdelah region as measured in the 2023 ALS capture. 
Points represent mean values and error bars represent standard errors. Landform slope class is 
presented across horizontal panels and base net area (BNA) vs. environmentally significant area (ESA) 
status is shown on vertical panels. FESM is categorised into three categories shown in separate colours. 
Note that although we show the mean values, each region is composed of varying landform features 
(see Figure A7 for slope composition within each region) and fire severity impacts (see Figure A1 for 
FESM composition within each region). These data are the companion data that match the Eden data 
shown in Figure 11 of the main report. 

 



   
 

  91 
 

Figure A25. Mean p95 height returns for the Batemans Bay region as measured in the 2023 ALS capture. 
Points represent mean values and error bars represent standard errors. Landform slope class is 
presented across horizontal panels and base net area (BNA) vs. environmentally significant area (ESA) 
status is shown on vertical panels. FESM is categorised into three categories shown in separate colours. 
Note that although we show the mean values, each region is composed of varying landform features 
(see Figure A7 for slope composition within each region) and fire severity impacts (see Figure A1 for 
FESM composition within each region). These data are the companion data that match the Eden data 
shown in Figure 11 of the main report. 
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Figure A26. Mean canopy coverage for the Wauchope region as measured in the 2023 ALS capture. 
Points represent mean values and error bars represent standard errors. Landform slope class is 
presented across horizontal panels and base net area (BNA) vs. environmentally significant area (ESA) 
status is shown on vertical panels. FESM is categorised into three categories shown in separate colours. 
Note that although we show the mean values, each region is composed of varying landform features 
(see Figure A7 for slope composition within each region) and fire severity impacts (see Figure A1 for 
FESM composition within each region). These data are the companion data that match the Eden data 
shown in Figure 20 of the main report. 
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Figure A27. Mean canopy coverage for the Styx River region as measured in the 2023 ALS capture. Points 
represent mean values and error bars represent standard errors. Landform slope class is presented 
across horizontal panels and base net area (BNA) vs. environmentally significant area (ESA) status is 
shown on vertical panels. FESM is categorised into three categories shown in separate colours. Note 
that although we show the mean values, each region is composed of varying landform features (see 
Figure A7 for slope composition within each region) and fire severity impacts (see Figure A1 for FESM 
composition within each region). These data are the companion data that match the Eden data shown in 
Figure 20 of the main report. 
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Figure A28. Mean canopy coverage for the Coffs Harbour region as measured in the 2023 ALS capture. 
Points represent mean values and error bars represent standard errors. Landform slope class is 
presented across horizontal panels and base net area (BNA) vs. environmentally significant area (ESA) 
status is shown on vertical panels. FESM is categorised into three categories shown in separate colours. 
Note that although we show the mean values, each region is composed of varying landform features 
(see Figure A7 for slope composition within each region) and fire severity impacts (see Figure A1 for 
FESM composition within each region). These data are the companion data that match the Eden data 
shown in Figure 20 of the main report. 
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Figure A29. Mean canopy coverage for the Casino region as measured in the 2023 ALS capture. Points 
represent mean values and error bars represent standard errors. Landform slope class is presented 
across horizontal panels and base net area (BNA) vs. environmentally significant area (ESA) status is 
shown on vertical panels. FESM is categorised into three categories shown in separate colours. Note 
that although we show the mean values, each region is composed of varying landform features (see 
Figure A7 for slope composition within each region) and fire severity impacts (see Figure A1 for FESM 
composition within each region). These data are the companion data that match the Eden data shown in 
Figure 20 of the main report. These data are the companion data that match the Eden data shown in 
Figure 20 of the main report. 
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Figure A30. Mean canopy coverage for the Bulahdelah region as measured in the 2023 ALS capture. 
Points represent mean values and error bars represent standard errors. Landform slope class is 
presented across horizontal panels and base net area (BNA) vs. environmentally significant area (ESA) 
status is shown on vertical panels. FESM is categorised into three categories shown in separate colours. 
Note that although we show the mean values, each region is composed of varying landform features 
(see Figure A7 for slope composition within each region) and fire severity impacts (see Figure A1 for 
FESM composition within each region). These data are the companion data that match the Eden data 
shown in Figure 20 of the main report. 
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Figure A31. Mean canopy coverage for the Batemans Bay region as measured in the 2023 ALS capture. 
Points represent mean values and error bars represent standard errors. Landform slope class is 
presented across horizontal panels and base net area (BNA) vs. environmentally significant area (ESA) 
status is shown on vertical panels. FESM is categorised into three categories shown in separate colours. 
Note that although we show the mean values, each region is composed of varying landform features 
(see Figure A7 for slope composition within each region) and fire severity impacts (see Figure A1 for 
FESM composition within each region). These data are the companion data that match the Eden data 
shown in Figure 20 of the main report. 
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Appendix B: LiDAR in forestry research: a literature review 
 

1. Introduction 
LiDAR (Light Detection and Ranging) is a remote sensing technology that has greatly improved our ability 
to measure forest structure and dynamics at the level of individual trees and over large areas (Atkins et 
al., 2023; Estrada et al., 2023; Lefsky et al., 2002; Matasci et al., 2018; Whelan et al., 2023; White et al., 
2017; Wulder et al., 2008). Due to technological and theoretical breakthroughs, airborne LiDAR (ALS) and 
terrestrial LiDAR (TLS) technologies are being implemented in various and novel ways in ecological 
research, and much of the literature explores the effectiveness of LiDAR alongside aerial imagery and 
traditional field-based methods of collecting forest data (Bouvier et al., 2015; Coops et al., 2021; 
Haywood & Stone, 2011).  
 
It is also well-documented that although LiDAR can provide accurate information about forest dynamics, 
it comes with the high cost of enormous data size and bears the difficulties associated with sharing and 
working with data this immense (Atkins et al., 2023). Currently, there is a vigorous effort in the field to 
navigate this issue so that appropriate ecological decisions can be made promptly considering climate 
change and restoration efforts (Almeida et al., 2019; Bartels et al., 2016; Bolton et al., 2015; Estrada et 
al., 2023; Hislop & Stone, 2023; Mazlan et al., 2023).  
 
In the context of New South Wales state forests, using ALS to analyse structural changes following 
disturbances has garnered significant attention due to its implications for forest management, ecological 
stability, biodiversity conservation, and species richness. Understanding the methodologies employed in 
mapping ALS metrics onto forest structure attributes is crucial for analysing ALS data accurately and 
efficiently.  
 
This literature review aims to explore the existing literature on LiDAR applications in forestry research. 
The primary objectives include identifying key concepts used in forestry research, mapping the research 
objectives of studies investigating LiDAR's use in forestry, identifying common methodologies for 
estimating forest structural diversity, understanding the types of ancillary data used in conjunction with 
LiDAR, and exploring computational models and statistical analyses applied to LiDAR and ancillary data. 
By achieving these goals, this review seeks to provide a broad understanding of the current state of 
knowledge surrounding LiDAR's use in forest research and management.  

  
2. Methods 
 
2.1 Search and inclusion strategies 
Published findings about the use of LiDAR in forestry applications were collected by searching Google 
Scholar. Keywords used included terms concerning LiDAR, forest structure, forest recovery dynamics, 
and data analysis approaches.  
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Table B1. Search terms used to access publications about LiDAR in forestry applications  

 

Database  Search Terms  

Google 

Scholar 

AND/OR(LiDAR, airborne LiDAR, ALS, terrestrial LiDAR, TLS), OR(canopy, canopy height, 
canopy height model, forest structure, forest structural complexity, forest structural 

diversity, leaf area density, vegetation density), OR(area-based approach, voxel-based 
approach, voxel, voxelisation), OR(forest recovery, forest regeneration, fire disturbance, 

post-fire recovery, silvicultural disturbance), OR(parametric, non-parametric, deep learning, 
machine learning, random forest), OR(fire risk, fire severity, fuel load, wildfire, wildfire risk), 

OR(Australia, NSW, eucalypt forest)  
   

  

The searches produced a collection of 99 peer reviewed articles (including 84 research articles, 5 
application articles, and 10 review articles), 2 technical reports, 1 conference paper, and 1 book chapter. 
Search terms were qualitatively screened based on titles, abstracts, keywords, and study approaches. 
Studies that involved forestry research but did not specifically include the use LiDAR technology were 
excluded. For example, studies that only evaluated the use of other remote sensing technologies, such as 
Landsat and remote imaging in forestry applications, were excluded. Studies that focused on tree species 
classification rather than forest structural attributes were also excluded, along with studies that 
investigated forest recovery trends without using LiDAR. The qualitative screening reduced the number 
of studies to 83.  
  
3. Results 
 
3.1 Forest sites 
The included articles used data from various forest sites around the world: USA (16 studies); Australia (12 
studies); Brazil (9 studies); China and Finland (5 studies); Italy (4 studies); Germany, Poland, Spain, and 
New Zealand (2 studies); and Austria, Chile, France, Norway, Panama, South Korea, and Switzerland (1 
study). Most of the included articles investigated only one forest site. However, four articles used point 
clouds from multiple sites, and nine articles did not examine any forest site on account of exploring 
LiDAR from a theoretical viewpoint or through technical applications.  
  
3.2 Thematic analysis 
One of the first tasks was classifying the broad themes in LiDAR and forestry research. LiDAR is a versatile 
technology used to answer various questions concerning trees, forests, and ecological management, so 
articles often involve multiple topics corresponding to their specific research questions. For example, 
some articles compare the effectiveness of airborne LiDAR to other point clouds (Arkin et al., 2023; 
Ferrara et al., 2023), and others estimate forest structure using a combination of LiDAR and aerial 
imagery (Arkin et al., 2023; Blackman & Yuan, 2020; Matasci et al., 2018; Viana-Soto et al., 2022; White 
et al., 2022). Table B2 shows the themes compiled from reading the articles' introduction, methods, and 
results sections. The themes were represented by emoji graphics to facilitate the ease of organising the 
literature. Figure B1 shows the frequency of themes in this review.  
  



   
 

  100 
 

 
 
 

 

Table B2. Theme legend and topics 

Graphic  Theme(s)  Examples of topics and keywords within theme 

����  Forest structure  

Forest structural diversity (FSD), canopy structural complexity, canopy 
height model, canopy layers, understory structural complexity, 
understory vegetation density, species richness, height metrics, 
distribution metrics, leaf area index (LAI), leaf area density (LAD), 
volume, edge effects, stand age distribution, size class distribution, 
stand basal area, skewness, standard deviation, coefficient of variation 

����  Individual tree attributes  

Tree detection methods, tree crown delineation, height metrics, 
diameter metrics, position metrics, shape metrics, volume estimation, 
biomass estimation, species classification, individual tree mapping, 
basal area 

���������  Urban forests  
Urban canopy coverage, urban development, urban vegetation, 
vegetation indicators, object-based image analysis 

�����  
Forest regrowth / Tree 
regeneration  

Forest landscape restoration, growth indicators, recovery rates, 
recovery dynamics 

���  Aerial imagery  
RGB imagery, hyperspectral imagery, Sentinel-2 satellite imagery, 
Landsat time series, GIS 

������  Airborne LiDAR  High-density ALS, low-density ALS, ALS point clouds  

���������  Terrestrial LiDAR  High-density TLS, low-density TLS, TLS point clouds  

��  Point clouds  
LiDAR point clouds, photogrammetry point clouds, 2D point clouds, 3D 
point clouds 

�������  Multitemporal analysis  Multitemporal LiDAR, Landsat time series 

⛰  Topography Digital terrain model, digital elevation model 

����  Fire  
Fire disturbance, fire severity, fuel estimation, fuel load, wildfire risk, 
canopy fuel, surface fuel, recovery time, recovery dynamics, stand-
replacing disturbance, snag detection, burn ratio 

����  Harvest  
Silvicultural disturbance, harvest events, timber harvest, recovery 
time, recovery dynamics 

🌡🌡  Climate Drought, drought recovery, climate change 

������  Australia  
Australian forest, eucalypt forest, eucalypt regeneration, 'Black 
Summer' wildfires 

���������  Fauna  Species richness 

����  Analysis methods  

Parametric, non-parametric, machine learning, deep learning, random 
forest, support vector machines, k-nearest neighbour, convolutional 
neural network, effective number of layers, regression, ordinary least 
squares regression (OLS), seamingly unrelated regression (SUR), partial 
least squares regression, Wilcoxon test 

�����  Voxel-based analysis  Voxelisation, volume voxelisation, 3D point cloud, 3D volume, 
smoothing  
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🏗🏗  Construction  Construction industry, urban environments 
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 Figure B1 - Frequency of themes in articles. See Table B2 for graphics legend.  

 

 

3.3 Primary methodologies 
A key distinction extracted from this review is that LiDAR is used in three primary ways to analyse forest 
structure. First, the area-based approach (ABA) (see Table B3) aims to create a predictive model 
connecting ALS variables with a specific inventory attribute at chosen sample plot areas (White et al., 
2017). The models derived from the ABA are typically based on metrics obtained from summarisations of 
individual LiDAR returns over these areas (Moran, 2018; Whelan et al., 2023). In this review, the ABA was 
found to be the most frequently used approach for utilising LiDAR in forestry research.  

 
By contrast, the voxel-based approach (VBA) (see Table B4) uses metrics based on summarisation by 
volumetric pixel (Whelan et al., 2023). Although the VBA is also used to analyse forest structural diversity 
over large areas, it is not as widely known. Some evidence suggests that compared to the ABA, the VBA is 
more sensitive to horizontal and vertical forest structural complexity because the data is not limited to 
the first LiDAR returns (Whelan et al., 2023). For this reason, it captures the heterogeneity of sub-canopy 
vegetation relatively well. Other evidence suggests that a mixture of both approaches yields the best 
outcome (Blackburn, 2021).  
 
The third approach, known as individual tree segmentation (ITS) or individual tree detection (ITD) (see 
Table B5), involves using LiDAR metrics to derive attributes of individual trees. This approach has 
applications in classifying tree species, identifying snags, measuring biomass, delineating tree crowns, 
and estimating crown structure, among others (Brolly et al., 2021; Casas et al., 2016; Chen et al., 2006; 
Karna et al., 2019; Mielcarek et al., 2018; Wilkes et al., 2023). While the literature refers to ITS as a 
separate LiDAR methodology, it is sometimes used alongside the ABA (Silva et al., 2022; Torrensan et al., 
2016) and VBA (Knapp et al., 2021; Leiterer et al., 2012; Li et al., 2024; Pearse et al., 2018), depending on 
the research question under evaluation.  
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Patterns in analyses were identified across all three primary methodologies, and it was found that a 
significant variety of statistical approaches are used to correlate LiDAR data with field samples and forest 
inventory data. Parametric regression analyses such as linear regression, polynomial regression, ordinary 
least squares (OLS), partial least squares (PLS), and seemingly unrelated regression (SUR) were used in all 
three methodologies. Non-parametric machine learning (ML) methods were also used commonly, but 
the type of ML analyses varied based on approach. The ITS approach primarily uses support vector 
machines, artificial neural networks, and deep learning. Whereas the ABA approach relies more heavily 
on random forest algorithms, k-nearest neighbour, and convolutional neural networks (Estrada et al., 
2023). Some studies also used a simple comparison of summary statistics such as mean height, skewness, 
and standard deviation, to calculate height parameters of forest areas (Bolten et al., 2015; Hillman et al., 
2021 Szostak, 2020). 
  

Table B3. Studies using an area-based (ABA) methodology 

Author(s) Year Article 
type 

Themes Study 
area 

Research 
objective 

Primary 
methodology 

Data types Analysis 
methods 

Adhikari, Montes 
& Peduzzi 
https://doi.org/1
0.3390/rs150512
84 
  

2023 Research 
🌲🌲 🚁🚁 
💻💻 

Chile 

Forest 
structural 
diversity 
(FSD) 

Area-based ALS 
Inventory 

Least Squares 
Regression 
Adaptive Least 
Absolute 
Shrinkage and 
Selection 
Operator 
(ALASSO) 
Generalised 
Additive 
Modeling 
Selection 
(GAMSEL) 
 Random forest 
(RF) 

Almeida et al. 
https://doi.org/1
0.1016/j.foreco.
2019.02.002 
  

2019 Research 
🌲🌲 🚁🚁 
🌱🌱 

Brazil FSD Area-based 
Inventory 
TLS 

RF 

Arkin et al. 
https://doi.org/1
0.1093/forestry/
cpad020 
  

2023 Research 
🌲🌲 🚁🚁 
🚜🚜 🌏🌏 
🔥🔥 

Canada Fuel 
estimation Area-based 

ALS 
DAP 
Field 
MLS 
  

Linear regression 

Atkins et al. 
https://doi.org/1
0.1002/ecs2.463
3 
  

2023(a) Review 🌲🌲 🚁🚁 — FSD Area-based — — 

Atkins et 
al.https://doi.org
/10.1111/2041-
210x.14040 
  

2023(b) Research 🌲🌲 🚁🚁 USA FSD Area-based ALS 
Inventory 

Shannon–
Weiner 
diversity 
function 
MacArthur–
Horn 
algorithm 

Atkins et al. 
https://doi.org/1
0.1111/2041-
210X.13061 
  

2018 Application 🌲🌲 💻💻 — FSD Area-based —  — 
 

https://doi.org/10.3390/rs15051284
https://doi.org/10.3390/rs15051284
https://doi.org/10.3390/rs15051284
https://doi.org/10.1016/j.foreco.2019.02.002
https://doi.org/10.1016/j.foreco.2019.02.002
https://doi.org/10.1016/j.foreco.2019.02.002
https://doi.org/10.1093/forestry/cpad020
https://doi.org/10.1093/forestry/cpad020
https://doi.org/10.1093/forestry/cpad020
https://doi.org/10.1002/ecs2.4633
https://doi.org/10.1002/ecs2.4633
https://doi.org/10.1002/ecs2.4633
https://doi.org/10.1111/2041-210x.14040
https://doi.org/10.1111/2041-210x.14040
https://doi.org/10.1111/2041-210x.14040
https://doi.org/10.1111/2041-210X.13061
https://doi.org/10.1111/2041-210X.13061
https://doi.org/10.1111/2041-210X.13061
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Blackman & 
Yuan 
https://doi.org/1
0.3390/rs121118
20 
  

2020 Research 
🌲🌲 🚁🚁 
🌏🌏 

USA FSD Area-based Aerial images 
ALS 

Watershed 
segmentation 
algorithm 

Bolton, Coops, & 
Wulder 
https://doi.org/1
0.1016/j.rse.201
5.03.004 
  

2015 Research 
🌏🌏 🚁🚁 
🔥🔥 🌱🌱 

Canada FSD Area-based ALS 
Landsat 

Summary 
statistics  

Bouvier et al. 
https://doi.org/1
0.1016/j.rse.201
4.10.004 
  

2015 Research 
🌲🌲 🚁🚁 
💻💻 

France FSD Area-based ALS 
Field Linear regression 

Campbell et al. 
https://doi.org/1
0.1016/j.rse.201
8.06.023 
  

2018 Research 🌲🌲 🚁🚁 USA FSD Area-based ALS 
Field Linear regression 

Coops et al. 
https://doi.org/1
0.1016/j.rse.202
1.112477 
  

2021 Review 🌲🌲 🚁🚁 — FSD Area-based Mixed 

Regression 
Imputation 
Machine 
learning 

Cosenza et al. 
https://doi.org/1
0.1093/forestry/
cpaa034 
  

2021 Research 
🌲🌲 🚁🚁 
💻💻 

Brazil 
Finland 
Norway 
USA 

FSD Area-based ALS 
Field 

OLS 
kNN 
RF 

Fisher et al. 
https://doi.org/1
0.1016/j.rse.201
9.111520 
  

2020 Research 
🌲🌲 🚁🚁 
🦘🦘 

Australia FSD Area-based ALS 
Field 

Regression 
Multiple-output 
regression 

Francis, Lutz, & 
Farrior 
https://doi.org/1
0.1016/j.foreco.
2023.121035 
  

2023 Research 🌳🌳 🚁🚁 USA FSD Area-based ALS 
Field 

Perfect 
plasticity 
approximation 
(PPA) model 

Gelabert et al. 
https://www.tan
dfonline.com/do
i/pdf/10.1080/1
5481603.2020.1
738060 
  

2020 Research 
🌲🌲 🚁🚁 
🔥🔥 💻💻 

Spain FSD Area-based ALS 
kNN 
SVM 
RF 

Haywood & 
Stone 
https://doi.org/1
0.1080/0004915
8.2011.1067634
0 
  

2011 Research 
🌲🌲 

🚁🚁🌱🌱 
🦘🦘 

Australia FSD Area-based ALS 
Field Regression 

Hillman et al. 
https://doi.org/1
0.3390/fire4010
014 
  

2021 Research 
🌲🌲 🦘🦘 
🚁🚁 🔥🔥 

Australia 
FSD 
Fire 
severity 

Area-based ALS 
SfM RF 

Hirschmugl, Lippl 
& Sobe 2023 Research 🌲🌲 🚁🚁 Austria FSD Area-based ALS 

GEDI 

Break-detection 
algorithm (BDA) 
 Expert-based 

https://doi.org/10.3390/rs12111820
https://doi.org/10.3390/rs12111820
https://doi.org/10.3390/rs12111820
https://doi.org/10.1016/j.rse.2015.03.004
https://doi.org/10.1016/j.rse.2015.03.004
https://doi.org/10.1016/j.rse.2015.03.004
https://doi.org/10.1016/j.rse.2014.10.004
https://doi.org/10.1016/j.rse.2014.10.004
https://doi.org/10.1016/j.rse.2014.10.004
https://doi.org/10.1016/j.rse.2018.06.023
https://doi.org/10.1016/j.rse.2018.06.023
https://doi.org/10.1016/j.rse.2018.06.023
https://doi.org/10.1016/j.rse.2021.112477
https://doi.org/10.1016/j.rse.2021.112477
https://doi.org/10.1016/j.rse.2021.112477
https://doi.org/10.1093/forestry/cpaa034
https://doi.org/10.1093/forestry/cpaa034
https://doi.org/10.1093/forestry/cpaa034
https://doi.org/10.1016/j.rse.2019.111520
https://doi.org/10.1016/j.rse.2019.111520
https://doi.org/10.1016/j.rse.2019.111520
https://doi.org/10.1016/j.foreco.2023.121035
https://doi.org/10.1016/j.foreco.2023.121035
https://doi.org/10.1016/j.foreco.2023.121035
https://www.tandfonline.com/doi/pdf/10.1080/15481603.2020.1738060
https://www.tandfonline.com/doi/pdf/10.1080/15481603.2020.1738060
https://www.tandfonline.com/doi/pdf/10.1080/15481603.2020.1738060
https://www.tandfonline.com/doi/pdf/10.1080/15481603.2020.1738060
https://www.tandfonline.com/doi/pdf/10.1080/15481603.2020.1738060
https://doi.org/10.1080/00049158.2011.10676340
https://doi.org/10.1080/00049158.2011.10676340
https://doi.org/10.1080/00049158.2011.10676340
https://doi.org/10.1080/00049158.2011.10676340
https://doi.org/10.3390/fire4010014
https://doi.org/10.3390/fire4010014
https://doi.org/10.3390/fire4010014
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https://doi.org/1
0.3390/rs150306
64 
  

assessment 
(EBA) 

Hislop et al. 
https://doi.org/1
0.1080/0004915
8.2023.2288776 
  

2013 Research 
🌲🌲 🚁🚁 
⏰ 🪓🪓 
🦘🦘 

Australia FSD Area-based ALS 
RGB imagery 

CHM (Canopy 
Height Model) 
difference maps 
 Convolution 
filter 

Jarron et al. 
https://doi.org/1
0.1016/j.rse.202
0.111770 
  

2011 Research 🌲🌲 🚁🚁 Canada FSD Area-based ALS 
Field 

Linear regression 
 Forward-
stepwise 
regression 
 10-fold cross-
validation 
 Two-sample t-
test 

Kane et al. 
https://doi.org/1
0.1139/X10-024 
  

2010 Research 🌲🌲 🚁🚁 USA FSD Area-based ALS 
Field Linear regression 

Karna et al. 
https://doi.org/1
0.1016/j.foreco.
2020.118255 
  

2020 Research 
🌲🌲 🚁🚁 
🔥🔥🦘🦘 

Australia FSD Area-based ALS 
Field 

Two-way ANOVA 
 RF 

Kay et al. 
https://doi.org/1
0.3390/rs132449
61 
  

2021 Research 🌲🌲 🚁🚁  Multiple FSD Area-based 

Ice, Cloud 
and 
Elevation 
Satellite 
(ICESat) 
Geoscience 
Laser 
Altimeter 
System 
(GLAS) 
LiDAR 

Least squares 
regression 

Krisanski et al. 
https://doi.org/1
0.3390/rs130814
13 
  

2021(a) Research 
🌲🌲 🚁🚁 
☁ 💻💻 
⛰ 

Mixed FSD Area-based 

ALS 
MLS 
TLS 
UAS-AP 

Deep learning 

Lefsky et al. 
https://doi.org/1
0.1641/0006-
3568(2002)052[0
019:LRSFES]2.0.C
O;2 
  

2002 Review 🌲🌲 🚁🚁  —  FSD Area-based  —  — 

Liao et al. 
https://doi.org/1
0.1016/j.jag.202
0.102209 
  

2020 Research 
🌲🌲 🚁🚁 
🌏🌏🦘🦘 

Australia FSD Area-based 
ALS 
Field 
Landsat 

RF 

Listopad et al. 
https://doi.org/1
0.1016/j.ecolind.
2015.04.017 
  

2015 Research 🌲🌲 🚁🚁 USA 
FSD 
Fire 
severity 

Area-based ALS 
Field 

One-way ANOVA 
 Linear 
regression 
 Principal 
Components 
Analysis (PCA)  

Liu et al. 2020 Research 
🌲🌲 🚁🚁 
🌏🌏 

China FSD Area-based ALS 
UAV-AP 

Ordinary 
neighbor (ON) 

https://doi.org/10.3390/rs15030664
https://doi.org/10.3390/rs15030664
https://doi.org/10.3390/rs15030664
https://doi.org/10.1080/00049158.2023.2288776
https://doi.org/10.1080/00049158.2023.2288776
https://doi.org/10.1080/00049158.2023.2288776
https://doi.org/10.1016/j.rse.2020.111770
https://doi.org/10.1016/j.rse.2020.111770
https://doi.org/10.1016/j.rse.2020.111770
https://doi.org/10.1139/X10-024
https://doi.org/10.1139/X10-024
https://doi.org/10.1016/j.foreco.2020.118255
https://doi.org/10.1016/j.foreco.2020.118255
https://doi.org/10.1016/j.foreco.2020.118255
https://doi.org/10.3390/rs13244961
https://doi.org/10.3390/rs13244961
https://doi.org/10.3390/rs13244961
https://doi.org/10.3390/rs13081413
https://doi.org/10.3390/rs13081413
https://doi.org/10.3390/rs13081413
https://doi.org/10.1641/0006-3568(2002)052%5b0019:LRSFES%5d2.0.CO;2
https://doi.org/10.1641/0006-3568(2002)052%5b0019:LRSFES%5d2.0.CO;2
https://doi.org/10.1641/0006-3568(2002)052%5b0019:LRSFES%5d2.0.CO;2
https://doi.org/10.1641/0006-3568(2002)052%5b0019:LRSFES%5d2.0.CO;2
https://doi.org/10.1641/0006-3568(2002)052%5b0019:LRSFES%5d2.0.CO;2
https://doi.org/10.1016/j.jag.2020.102209
https://doi.org/10.1016/j.jag.2020.102209
https://doi.org/10.1016/j.jag.2020.102209
https://doi.org/10.1016/j.ecolind.2015.04.017
https://doi.org/10.1016/j.ecolind.2015.04.017
https://doi.org/10.1016/j.ecolind.2015.04.017
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https://doi.org/1
0.3390/rs121828
84 
  

Constrained 
neighbor (CN) 

Matasci et al. 
https://doi.org/1
0.1016/j.rse.201
8.07.024 
  

2018 Research 
🌲🌲 🚁🚁 
🌏🌏 

Canada FSD Area-based ALS 
Landsat RF 

Mazlan et al. 
https://doi.org/1
0.1007/978-981-
19-4200-6_3 
  

2023 Book 
chapter 

🌲🌲 🚁🚁 
🌱🌱 

— 

FSD 
Forest 
landscape 
restoration 

Area-based ALS 
Field  — 

Moran, Rowell & 
Seielstad 
https://doi.org/1
0.1016/j.rse.201
8.04.005 
  

2018 Research 🌲🌲 🚁🚁 USA FSD Area-based ALS 
Field 

Random forest 
 Hierarchical 
clustering 

Nguyen et al. 
https://doi.org/1
0.1016/j.jag.201
9.101952 
  

2020 Research 
🌲🌲 🚁🚁 
⏰🌏🌏 🔥🔥 
🪓🪓 🦘🦘 

Australia FSD Area-based 

ALS 
Disturbance 
data 
Inventory  
Landsat 

kNN 
 RF 

Roussel et al. 
https://doi.org/1
0.1016/j.rse.202
0.112061 
  

2020 Review  
🌲🌲 🚁🚁 
💻💻 

—  —  Area-based 
  —  — 

Roussel et al. 
https://doi.org/1
0.1016/j.rse.201
7.05.032 
  

2017 Research 🌲🌲 🚁🚁 Canada FSD Area-based ALS Probabilistic 
models 

Sanchez-Lopez, 
Boschetti & 
Hudak 
https://doi.org/1
0.1093/forestry/
cpz048 
  

2020 Research 
🌲🌲 🚁🚁 
🔥🔥 🪓🪓 

USA FSD Area-based 
ALS 
Disturbance 
data 

RF 

Szostak 
https://doi.org/1
0.3390/geoscien
ces10080321 
  

2020 Research 
🌲🌲 🚁🚁 
🌏🌏 

Poland FSD Area-based 

ALS 
Cadastral 
data 
Orthophoto 
maps,  

Summary 
statistics 

Viana-Soto et al. 
https://doi.org/1
0.1016/j.jag.202
2.102754 
  

2022 Research 
🌲🌲 🚁🚁 
🌏🌏 🔥🔥 

Spain 
FSD 
Post-fire 
recovery 

Area-based ALS 
Landsat SVR 

Wang et al. 
https://doi.org/1
0.1016/j.jag.202
1.102353 
  

2021 Research 
🌲🌲 🚁🚁 
💻💻 

USA FSD Area-based ALS 
Landsat RF 

Watt et al. 
http://dx.doi.org
/10.1016/j.forec
o.2015.08.001 
  

2015 Research 
🌲🌲 🚁🚁 
🌏🌏 💻💻 

New 
Zealand Site Index Area-based 

ALS 
Field 
RapidEye 
imagery 

Multiple 
regression 
models 
 kNN 

https://doi.org/10.3390/rs12182884
https://doi.org/10.3390/rs12182884
https://doi.org/10.3390/rs12182884
https://doi.org/10.1016/j.rse.2018.07.024
https://doi.org/10.1016/j.rse.2018.07.024
https://doi.org/10.1016/j.rse.2018.07.024
https://doi.org/10.1007/978-981-19-4200-6_3
https://doi.org/10.1007/978-981-19-4200-6_3
https://doi.org/10.1007/978-981-19-4200-6_3
https://doi.org/10.1016/j.rse.2018.04.005
https://doi.org/10.1016/j.rse.2018.04.005
https://doi.org/10.1016/j.rse.2018.04.005
https://doi.org/10.1016/j.jag.2019.101952
https://doi.org/10.1016/j.jag.2019.101952
https://doi.org/10.1016/j.jag.2019.101952
https://doi.org/10.1016/j.rse.2020.112061
https://doi.org/10.1016/j.rse.2020.112061
https://doi.org/10.1016/j.rse.2020.112061
https://doi.org/10.1016/j.rse.2017.05.032
https://doi.org/10.1016/j.rse.2017.05.032
https://doi.org/10.1016/j.rse.2017.05.032
https://doi.org/10.1093/forestry/cpz048
https://doi.org/10.1093/forestry/cpz048
https://doi.org/10.1093/forestry/cpz048
https://doi.org/10.3390/geosciences10080321
https://doi.org/10.3390/geosciences10080321
https://doi.org/10.3390/geosciences10080321
https://doi.org/10.1016/j.jag.2022.102754
https://doi.org/10.1016/j.jag.2022.102754
https://doi.org/10.1016/j.jag.2022.102754
https://doi.org/10.1016/j.jag.2021.102353
https://doi.org/10.1016/j.jag.2021.102353
https://doi.org/10.1016/j.jag.2021.102353
http://dx.doi.org/10.1016/j.foreco.2015.08.001
http://dx.doi.org/10.1016/j.foreco.2015.08.001
http://dx.doi.org/10.1016/j.foreco.2015.08.001
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White et al. 
https://doi.org/1
0.1016/j.rse.202
2.112904 
  

2022 Research 
🌲🌲 🚁🚁 
🌏🌏 ⏰ 
🌱🌱 

Canada 
FSD 
Recovery 
trends 

Area-based AL 
 Landsat Getis statistic 

White et al. 
http://dx.doi.org
/10.13140/RG.2.
2.26770.96964 
  

2017(a) Technical 
report 🌲🌲 🚁🚁 Multiple FSD Area-based ALS 

Field Mixed 

Wulder et al. 
http://dx.doi.org
/10.5558/tfc848
07-6 
  

2008 Mixed 🌲🌲 🚁🚁 — FSD Area-based ALS — 

 

  

https://doi.org/10.1016/j.rse.2022.112904
https://doi.org/10.1016/j.rse.2022.112904
https://doi.org/10.1016/j.rse.2022.112904
http://dx.doi.org/10.13140/RG.2.2.26770.96964
http://dx.doi.org/10.13140/RG.2.2.26770.96964
http://dx.doi.org/10.13140/RG.2.2.26770.96964
http://dx.doi.org/10.5558/tfc84807-6
http://dx.doi.org/10.5558/tfc84807-6
http://dx.doi.org/10.5558/tfc84807-6
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Table B4. Studies using a voxel-based (VBA) methodology 

Author(s) Year Article type Themes Study 
area 

Research 
objective 

Primary 
methodology 

Data types Analysis 
methods 

Aalto et al. 
https://doi.org/1
0.1016/j.foreco.
2023.120885 
  

2023 Research 
🌲🌲  🚜🚜 
🪓🪓🪓🪓 

Finland FSD Voxel-based  TLS 
Random forest 
(RF) 
Wilcoxon test 

Almeida et al. 
https://doi.org/1
0.3390/rs110100
92 
  

2019 (b) Research 
🌲🌲 🚁🚁 
🪓🪓 

Brazil FSD Voxel-based  ALS MacArthur-Horn 
equation 

Carrasco et al. 
https://doi.org/1
0.3390/rs110707
43 
  

2019 Research 
🌲🌲 🚁🚁 
🦜🦜🪓🪓 

USA FSD Voxel-based  ALS, Field Linear regression 
RF 

Ehbrecht et al. 
https://doi.org/1
0.1016/j.foreco.
2016.09.003 
  

2016 Research 
🌲🌲 🚜🚜 
🪓🪓 

Germany FSD Voxel-based  Field, TLS Linear regression 

Ferrara et al. 
https://doi.org/1
0.3390/s230105
11 
  

2023 Research 
🌲🌲 🚁🚁 
🚜🚜 🪓🪓 

Italy FSD Voxel-based  ALS, Field, TLS Linear regression 

Hillman et al. 
http://doi.org/1
0.1016/j.jag.202
0.102261 
  

2021 Research 
🌲🌲 🚁🚁 
🚜🚜 
🦘🦘🪓🪓 

Australia FSD, Fuel 
hazard Voxel-based ALS, TLS Summary 

statistics 

Jaskierniak et al. 
https://doi.org/1
0.1016/j.rse.201
0.10.003 
  

2022 Research 
🌲🌲 🚁🚁 
🦘🦘🪓🪓 

Australia FSD Voxel-based  ALS, Field 

Generalised 
Additive Models 
for Location, 
Scale and Shape 
(GAMLSS) 

Kamoske et al. 
https://doi.org/1
0.1016/j.foreco.
2018.11.017 
  

2010 Research 
🌲🌲 🚁🚁 
🪓🪓 

USA FSD Voxel-based  ALS, Field Linear regression 

Puletti et al. 
https://doi.org/1
0.1016/j.rsase.2
021.100620 
  

2021 Research 
🌲🌲 🚜🚜 
🪓🪓 

Italy FSD Voxel-based  Field, TLS 

Hierarchical 
clustering 
analysis 
 Principal 
Component 
Analysis 
 Spearman 
correlation 
coefficient 
 Wilcoxon test 

Puletti, 
Castronuovo & 
Ferra 
https://www.bio
rxiv.org/content
/10.1101/2023.0
2.01.526548.full 
  

2023 Research 
🌲🌲 🚜🚜 
💻💻 🪓🪓 

Italy FSD Voxel-based  Field, TLS crossing3dforest 

Wang et al. 2020 Research 
🌲🌲 🚁🚁 
🪓🪓 

China FSD Voxel-based ALS, Field RF 

https://doi.org/10.1016/j.foreco.2023.120885
https://doi.org/10.1016/j.foreco.2023.120885
https://doi.org/10.1016/j.foreco.2023.120885
https://doi.org/10.3390/rs11010092
https://doi.org/10.3390/rs11010092
https://doi.org/10.3390/rs11010092
https://doi.org/10.3390/rs11070743
https://doi.org/10.3390/rs11070743
https://doi.org/10.3390/rs11070743
https://doi.org/10.1016/j.foreco.2016.09.003
https://doi.org/10.1016/j.foreco.2016.09.003
https://doi.org/10.1016/j.foreco.2016.09.003
https://doi.org/10.3390/s23010511
https://doi.org/10.3390/s23010511
https://doi.org/10.3390/s23010511
http://doi.org/10.1016/j.jag.2020.102261
http://doi.org/10.1016/j.jag.2020.102261
http://doi.org/10.1016/j.jag.2020.102261
https://doi.org/10.1016/j.rse.2010.10.003
https://doi.org/10.1016/j.rse.2010.10.003
https://doi.org/10.1016/j.rse.2010.10.003
https://doi.org/10.1016/j.foreco.2018.11.017
https://doi.org/10.1016/j.foreco.2018.11.017
https://doi.org/10.1016/j.foreco.2018.11.017
https://doi.org/10.1016/j.rsase.2021.100620
https://doi.org/10.1016/j.rsase.2021.100620
https://doi.org/10.1016/j.rsase.2021.100620
https://www.biorxiv.org/content/10.1101/2023.02.01.526548.full
https://www.biorxiv.org/content/10.1101/2023.02.01.526548.full
https://www.biorxiv.org/content/10.1101/2023.02.01.526548.full
https://www.biorxiv.org/content/10.1101/2023.02.01.526548.full
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https://doi.org/1
0.1186/s40663-
020-00243-2 
  
Xu, Tong & Stilla 
https://doi.org/1
0.1016/j.autcon.
2021.103675 
  

2021 Review 
🏗🏗 🚁🚁 
🪓🪓 

NA Constructio
n Voxel-based Multiple point 

clouds Deep learning 

Zhang, He & Li 
https://doi.org/1
0.7275/t8fk-
8w94 
  

2022 Conference 
paper 

🏡🏡 🚁🚁 
🪓🪓 

China 
Urban 
vegetation 
attributes 

Voxel-based ALS PointCNN 

Zhang, Cao & 
She 
https://doi.org/1
0.3390/rs909094
0 
  

2017 Research 
🌲🌲 🚁🚁 
🪓🪓 

China FSD Voxel-based ALS, Field Multiple 
regression 

Zięba-Kulawik et 
al. 
https://doi.org/1
0.1016/j.ufug.20
21.127324 
  

2021 Research 
🏡🏡 🚁🚁 
🪓🪓 

Luxembo
urg 

Urban 
vegetation 
attributes 

Voxel-based ALS, Cadastral 
shapefiles Linear regression 

 

 

  

https://doi.org/10.1186/s40663-020-00243-2
https://doi.org/10.1186/s40663-020-00243-2
https://doi.org/10.1186/s40663-020-00243-2
https://doi.org/10.1016/j.autcon.2021.103675
https://doi.org/10.1016/j.autcon.2021.103675
https://doi.org/10.1016/j.autcon.2021.103675
https://doi.org/10.7275/t8fk-8w94
https://doi.org/10.7275/t8fk-8w94
https://doi.org/10.7275/t8fk-8w94
https://doi.org/10.3390/rs9090940
https://doi.org/10.3390/rs9090940
https://doi.org/10.3390/rs9090940
https://doi.org/10.1016/j.ufug.2021.127324
https://doi.org/10.1016/j.ufug.2021.127324
https://doi.org/10.1016/j.ufug.2021.127324
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Table B5. Studies using an individual tree segmentation (ITS) methodology 

Author(s) Year Article type Themes Study 
area 

Research 
objective 

Primary 
methodology 

Data types Analysis 
methods 

Brolly et al. 
https://doi.org/1
0.3390/rs130405
42 
  

2021 Research 
🌳🌳 🚜🚜 
🪓🪓 💻💻 

Finland 
Individual 
tree 
attributes 

Individual tree 
segmentation TLS Linear regression 

Bryson, Wang, & 
Allworth 
https://doi.org/1
0.3390/rs150923
80 
  

2023 Application 
🌳🌳 ☁ 
💻💻 

Australia, 
New 
Zealand 

Individual 
tree 
attributes 

Individual tree 
segmentation ALS, TLS Deep learning 

Casas et al. 
https://doi.org/1
0.1016/j.rse.201
5.12.044 
  

2016 Research 
🔥🔥 🦜🦜 
🚁🚁 

USA 

Burned 
forest 
characteris
ation 

Individual tree 
segmentation Field, ALS 

Watershed 
Segmentation 
algorithm 
 Snag/live 
classification 
model 
Conifer/hardwo
od snag 
classification 
model  
Gaussian 
process 
regression 
model 

Chang et al. 
https://ieeexplor
e.ieee.org/stamp
/stamp.jsp?arnu
mber=9913319 
  

2022 Research 
🌳🌳 🚜🚜 
💻💻 

Finland 
Individual 
tree 
attributes 

Individual tree 
segmentation Field, TLS Hierarchical 

clustering 

Chen et al. 
https://www.ing
entaconnect.co
m/content/asprs
/pers/2006/0000
0072/00000008/
art00003?crawle
r=true&mimetyp
e=application/pd
f 
  

2006 Research 
🌳🌳 🚁🚁 
💻💻 

USA 
Individual 
tree 
attributes 

Individual tree 
segmentation ALS Canopy maxima 

model 

Estrada et al. 
https://doi.org/1
0.3389/fpls.2023
.1139232 
  

2023 Review 
🌳🌳 🚁🚁 
🚜🚜 💻💻 

NA 
FSD 
Forest 
health 

Individual tree 
segmentation 

Mixed remote 
sensing 
devices 

Linear regression 
 Deep learning 
 RF 
 k-nearest 
neighbour (kNN) 

Karna et al. 
https://doi.org/1
0.3390/rs112024
33 
  

2019 Research 
🌳🌳 🚁🚁 
🔥🔥 

🌱🌱🦘🦘 
Australia 

Individual 
tree 
attributes 

Individual tree 
segmentation Field, ALS 

Generalised 
linear mixed 
effects models 
(LMEM) 

Krisanski et al. 
https://doi.org/1
0.3390/rs132246
77 
  

2021(b) Research 
🌳🌳 🚜🚜 
☁ 💻💻 

Mixed 
Individual 
tree 
attributes 

Individual tree 
segmentation Field, TLS 

Forest Structural 
Complexity Tool 
(FSCT) 

Lee, Woo & Lee 
https://doi.org/1
0.18494/SAM41
00 

2022 Research 🌳🌳 🚁🚁 📱📱 South 
Korea 

Individual 
tree 
attributes 

Individual tree 
segmentation ALS, MLS Circular fitting 

algorithms 

https://doi.org/10.3390/rs13040542
https://doi.org/10.3390/rs13040542
https://doi.org/10.3390/rs13040542
https://doi.org/10.3390/rs15092380
https://doi.org/10.3390/rs15092380
https://doi.org/10.3390/rs15092380
https://doi.org/10.1016/j.rse.2015.12.044
https://doi.org/10.1016/j.rse.2015.12.044
https://doi.org/10.1016/j.rse.2015.12.044
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https://doi.org/10.18494/SAM4100
https://doi.org/10.18494/SAM4100
https://doi.org/10.18494/SAM4100
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Mäyrä et al. 
https://doi.org/1
0.1016/j.rse.202
1.112322 
  

2021 Research 
🌳🌳 🚁🚁 
💻💻 

Finland 
Individual 
tree 
attributes 

Individual tree 
segmentation 

ALS, 
Hyperspectral 
imagery 

3D convolutional 
neural network 
(CNN) 

Mielcarek, 
Stereńczak & 
Khosravipour 
https://doi.org/1
0.1016/j.jag.201
8.05.002 
  

2018 Research 🌳🌳 🚁🚁 Belarus 
 Poland 

Individual 
tree 
attributes 

Individual tree 
segmentation Field, ALS Linear regression 

Penner, Pitt & 
Woods 
http://dx.doi.org
/10.5589/m13-
049 
  

2013 Research 
🌳🌳 🚁🚁 
💻💻 

Canada 
Individual 
tree 
attributes 

Individual tree 
segmentation Field, ALS 

Seamingly 
unrelated 
regression (SUR) 
 RF 
 kNN 

Qi et al. 
https://doi.org/1
0.3390/rs151947
68 
  

2023 Research 
🌳🌳 🚁🚁 
⏰ 

China 
Individual 
tree 
attributes 

Individual tree 
segmentation 

Field, 
multitempora
l ALS 

Individual tree 
segmentation 
algorithms  
Linear regression 
 10-fold cross-
validation 

Wilkes et al. 
http://doi.org/1
0.1111/2041-
210X.14233 
  

2023 Research 
🌳🌳 🚜🚜 
💻💻 

Multiple 
Individual 
tree 
attributes 

Individual tree 
segmentation TLS TLS2trees 

Windrim & 
Bryson 
https://doi.org/1
0.3390/rs120914
69 
  

2020 Research 
🌳🌳 🚁🚁 
💻💻 🦘🦘 

Australia 
Individual 
tree 
attributes 

Individual tree 
segmentation ALS Deep learning 

Zhao et al. 
https://doi.org/1
0.1007/s40725-
023-00184-3 
  

2023 Systematic 
review 

🌳🌳 🚁🚁 
🌏🌏 💻💻 

NA 
Individual 
tree 
attributes 

Individual tree 
segmentation Mixed CNN 

  

https://doi.org/10.1016/j.rse.2021.112322
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http://dx.doi.org/10.5589/m13-049
http://dx.doi.org/10.5589/m13-049
https://doi.org/10.3390/rs15194768
https://doi.org/10.3390/rs15194768
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Table B6 - Studies using mixed methodologies 

Author(s) Year Article type Themes Study 
area 

Research 
objective 

Primary 
methodology 

Data types Analysis 
methods 

Blackburn, 
Buscaglia, & 
Meador 
https://doi.org/1
0.1139/cjfr-
2020-0506 
  

2021 Research 
🌲🌲 🚁🚁 
🪓🪓 

USA FSD Area-based 
Voxel-based  ALS 

 Watershed 
segmentation 
algorithm 

Knapp, Huth, & 
Fischer 
https://doi.org/1
0.3390/rs130815
92 
  

2021 Research 
🌲🌲 🌳🌳 
🚁🚁🪓🪓 

Panama 

FSD, 
Individual 
tree 
attributes 

Voxel-based  
Individual tree 
segmentation 

Inventory , 
ALS 
simulations 

Power law 
regression 
models 

Leiterer et al. 
https://doi.org/1
0.1109/IGARSS.2
012.6350691 
  

2012 Research 
🌲🌲🌳🌳 🚁🚁 
🪓🪓 

Switzerla
nd 

FSD, 
Individual 
tree 
attributes 

Voxel-based  
Individual tree 
segmentation 

Field, TLS 

Hierarchical 
multi-
dimensional 
fuzzy clustering 
approach 

Li et al. 
https://doi.org/1
0.1111/2041-
210X.14290 
  

2024 Research 
🌲🌲🌳🌳 🚁🚁 
🚜🚜 🪓🪓 

Germany 

FSD, 
Individual 
tree 
attributes 

Voxel-based  
Individual tree 
segmentation 

ALS. TLS 

Physically based 
ray tracer (PBRT) 
 Voxel-based 
radiative 
transfer (VBRT) 

Pearse et al. 
http://doi.org/1
0.1016/j.jag.201
8.10.008 
  

2018 Research 
🌳🌳 🚁🚁 
🪓🪓 🦘🦘 

Australia 
Individual 
tree 
attributes 

Voxel-based 
 Individual 
tree 
segmentation 

Field, ALS RF 

Silva et al. 
https://doi.org/1
0.1111/2041-
210X.13830 
  

2022 Application 
🌳🌳 🚁🚁 
💻💻 

Brazil 

FSD, 
Individual 
tree 
attributes 

Area-based 
 Individual 
tree 
segmentation 

ALS Treetop 
application 

Torresan et al. 
https://doi.org/1
0.15287/afr.201
6.423 
  

2016 Research 🌲🌲🌳🌳 🚁🚁 Italy 

FSD, 
Individual 
tree 
attributes 

Area-based 
 Individual 
tree 
segmentation 

Field, ALS 

Pearson 
correlation test 
 Hierarchical 
clusting 
algorithm  
Kruskall-Wallis 
test 

Whelan et al. 
https://doi.org/1
0.1016/j.rse.202
2.113362 
  

2023 Research 
🌲🌲 🚁🚁 
🪓🪓 

USA FSD Area-based 
Voxel-based 

Inventory, 
ALS 

Simulated 
annealing 
 Multiplicative 
power model 

 

4. Discussion 
Our literature review provides a broad overview of how LiDAR technology is used in forestry research. In 
particular, it focuses on how LiDAR can help to gain accurate insights about forest structural complexity 
and dynamics. Several key themes, methodologies and statistical analysis approaches emerged from the 
literature, shedding light on the current state of knowledge and practices in the field. One of the primary 
findings from this review is the widespread use of LiDAR in forestry research across different 
geographical regions, including but not limited to the USA, Australia, Brazil, Canada, China, and Finland. 
The diverse range of forest sites studied demonstrates the global applicability of LiDAR technology in 
assessing forest structure.  
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The themes identified in the literature span a wide spectrum, encompassing comparisons of different 
LiDAR technologies, integration of LiDAR with aerial imagery, demonstration of various statistical 
analyses, and applications of LiDAR in estimating forest structure, post-disturbance recovery trends, and 
fauna biodiversity assessments. Furthermore, this review provides valuable insights into the distinctions 
between the ABA, VBA, and ITS approaches, shedding light on the potential advantages of each method. 
One limitation of this review is that it does not explore how multitemporal LiDAR analysis is employed in 
forestry research, which could be a promising avenue for future investigation. Multitemporal LiDAR 
analysis was not frequently encountered in our search, potentially due to the challenges posed by the 
substantial data load and the limited resources available for computation.  
 
Overall, this literature review contributes to our understanding of the breadth and depth of LiDAR 
applications in forestry research. By synthesising key concepts, methodologies, and trends, this review is 
a valuable resource for researchers, practitioners, and policymakers involved in forest management, 
conservation, and ecosystem monitoring. Future research directions may focus on exploring advanced 
LiDAR data processing techniques, improving integration with other remote sensing technologies, and 
addressing challenges related to data management and accessibility in large-scale LiDAR applications for 
forestry and environmental studies. 
  

5. Conclusions  
LiDAR has been used in forestry applications for over two decades and is rapidly evolving as technology 
and computational methods continue to improve. While LiDAR can provide accurate measurements of 
individual trees, stands, and heterogeneous forests, significant challenges remain in the realm of data 
storage, processing, and management. Furthermore, a standardised and efficient methodology for 
aligning LiDAR metrics with forest structural attributes remains to be found. This literature review 
demonstrates a widespread effort to advance this technology and find ways to use LiDAR to understand 
forest structural dynamics more precisely. So far, the ABA has been the most widespread methodology 
for assessing forest structure over large areas. However, the VBA shows promise for measuring the 
horizontal and vertical complexity of heterogeneous forests with a higher sensitivity than the ABA. On 
the other hand, the ITS is a well-known method for analysing the structure of individual trees. The range 
of statistical and modelling approaches used to analyse LiDAR data demonstrates the energetic effort of 
foresters, ecologists, and researchers alike to find fruitful ways of plumbing such rich and immense 
information.  
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